-
Notifications
You must be signed in to change notification settings - Fork 0
/
PolysemousTraining.cpp
950 lines (760 loc) · 27.6 KB
/
PolysemousTraining.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "PolysemousTraining.h"
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include "utils.h"
#include "hamming.h"
#include "FaissAssert.h"
/*****************************************
* Mixed PQ / Hamming
******************************************/
namespace faiss {
/****************************************************
* Optimization code
****************************************************/
SimulatedAnnealingParameters::SimulatedAnnealingParameters ()
{
// set some reasonable defaults for the optimization
init_temperature = 0.7;
temperature_decay = pow (0.9, 1/500.);
// reduce by a factor 0.9 every 500 it
n_iter = 500000;
n_redo = 2;
seed = 123;
verbose = 0;
only_bit_flips = false;
init_random = false;
}
// what would the cost update be if iw and jw were swapped?
// default implementation just computes both and computes the difference
double PermutationObjective::cost_update (
const int *perm, int iw, int jw) const
{
double orig_cost = compute_cost (perm);
std::vector<int> perm2 (n);
for (int i = 0; i < n; i++)
perm2[i] = perm[i];
perm2[iw] = perm[jw];
perm2[jw] = perm[iw];
double new_cost = compute_cost (perm2.data());
return new_cost - orig_cost;
}
SimulatedAnnealingOptimizer::SimulatedAnnealingOptimizer (
PermutationObjective *obj,
const SimulatedAnnealingParameters &p):
SimulatedAnnealingParameters (p),
obj (obj),
n(obj->n),
logfile (nullptr)
{
rnd = new RandomGenerator (p.seed);
FAISS_THROW_IF_NOT (n < 100000 && n >=0 );
}
SimulatedAnnealingOptimizer::~SimulatedAnnealingOptimizer ()
{
delete rnd;
}
// run the optimization and return the best result in best_perm
double SimulatedAnnealingOptimizer::run_optimization (int * best_perm)
{
double min_cost = 1e30;
// just do a few runs of the annealing and keep the lowest output cost
for (int it = 0; it < n_redo; it++) {
std::vector<int> perm(n);
for (int i = 0; i < n; i++)
perm[i] = i;
if (init_random) {
for (int i = 0; i < n; i++) {
int j = i + rnd->rand_int (n - i);
std::swap (perm[i], perm[j]);
}
}
float cost = optimize (perm.data());
if (logfile) fprintf (logfile, "\n");
if(verbose > 1) {
printf (" optimization run %d: cost=%g %s\n",
it, cost, cost < min_cost ? "keep" : "");
}
if (cost < min_cost) {
memcpy (best_perm, perm.data(), sizeof(perm[0]) * n);
min_cost = cost;
}
}
return min_cost;
}
// perform the optimization loop, starting from and modifying
// permutation in-place
double SimulatedAnnealingOptimizer::optimize (int *perm)
{
double cost = init_cost = obj->compute_cost (perm);
int log2n = 0;
while (!(n <= (1 << log2n))) log2n++;
double temperature = init_temperature;
int n_swap = 0, n_hot = 0;
for (int it = 0; it < n_iter; it++) {
temperature = temperature * temperature_decay;
int iw, jw;
if (only_bit_flips) {
iw = rnd->rand_int (n);
jw = iw ^ (1 << rnd->rand_int (log2n));
} else {
iw = rnd->rand_int (n);
jw = rnd->rand_int (n - 1);
if (jw == iw) jw++;
}
double delta_cost = obj->cost_update (perm, iw, jw);
if (delta_cost < 0 || rnd->rand_float () < temperature) {
std::swap (perm[iw], perm[jw]);
cost += delta_cost;
n_swap++;
if (delta_cost >= 0) n_hot++;
}
if (verbose > 2 || (verbose > 1 && it % 10000 == 0)) {
printf (" iteration %d cost %g temp %g n_swap %d "
"(%d hot) \r",
it, cost, temperature, n_swap, n_hot);
fflush(stdout);
}
if (logfile) {
fprintf (logfile, "%d %g %g %d %d\n",
it, cost, temperature, n_swap, n_hot);
}
}
if (verbose > 1) printf("\n");
return cost;
}
/****************************************************
* Cost functions: ReproduceDistanceTable
****************************************************/
static inline int hamming_dis (uint64_t a, uint64_t b)
{
return __builtin_popcountl (a ^ b);
}
namespace {
/// optimize permutation to reproduce a distance table with Hamming distances
struct ReproduceWithHammingObjective : PermutationObjective {
int nbits;
double dis_weight_factor;
static double sqr (double x) { return x * x; }
// weihgting of distances: it is more important to reproduce small
// distances well
double dis_weight (double x) const
{
return exp (-dis_weight_factor * x);
}
std::vector<double> target_dis; // wanted distances (size n^2)
std::vector<double> weights; // weights for each distance (size n^2)
// cost = quadratic difference between actual distance and Hamming distance
double compute_cost(const int* perm) const override {
double cost = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
double wanted = target_dis[i * n + j];
double w = weights[i * n + j];
double actual = hamming_dis(perm[i], perm[j]);
cost += w * sqr(wanted - actual);
}
}
return cost;
}
// what would the cost update be if iw and jw were swapped?
// computed in O(n) instead of O(n^2) for the full re-computation
double cost_update(const int* perm, int iw, int jw) const override {
double delta_cost = 0;
for (int i = 0; i < n; i++) {
if (i == iw) {
for (int j = 0; j < n; j++) {
double wanted = target_dis[i * n + j], w = weights[i * n + j];
double actual = hamming_dis(perm[i], perm[j]);
delta_cost -= w * sqr(wanted - actual);
double new_actual =
hamming_dis(perm[jw], perm[j == iw ? jw : j == jw ? iw : j]);
delta_cost += w * sqr(wanted - new_actual);
}
} else if (i == jw) {
for (int j = 0; j < n; j++) {
double wanted = target_dis[i * n + j], w = weights[i * n + j];
double actual = hamming_dis(perm[i], perm[j]);
delta_cost -= w * sqr(wanted - actual);
double new_actual =
hamming_dis(perm[iw], perm[j == iw ? jw : j == jw ? iw : j]);
delta_cost += w * sqr(wanted - new_actual);
}
} else {
int j = iw;
{
double wanted = target_dis[i * n + j], w = weights[i * n + j];
double actual = hamming_dis(perm[i], perm[j]);
delta_cost -= w * sqr(wanted - actual);
double new_actual = hamming_dis(perm[i], perm[jw]);
delta_cost += w * sqr(wanted - new_actual);
}
j = jw;
{
double wanted = target_dis[i * n + j], w = weights[i * n + j];
double actual = hamming_dis(perm[i], perm[j]);
delta_cost -= w * sqr(wanted - actual);
double new_actual = hamming_dis(perm[i], perm[iw]);
delta_cost += w * sqr(wanted - new_actual);
}
}
}
return delta_cost;
}
ReproduceWithHammingObjective (
int nbits,
const std::vector<double> & dis_table,
double dis_weight_factor):
nbits (nbits), dis_weight_factor (dis_weight_factor)
{
n = 1 << nbits;
FAISS_THROW_IF_NOT (dis_table.size() == n * n);
set_affine_target_dis (dis_table);
}
void set_affine_target_dis (const std::vector<double> & dis_table)
{
double sum = 0, sum2 = 0;
int n2 = n * n;
for (int i = 0; i < n2; i++) {
sum += dis_table [i];
sum2 += dis_table [i] * dis_table [i];
}
double mean = sum / n2;
double stddev = sqrt(sum2 / n2 - (sum / n2) * (sum / n2));
target_dis.resize (n2);
for (int i = 0; i < n2; i++) {
// the mapping function
double td = (dis_table [i] - mean) / stddev * sqrt(nbits / 4) +
nbits / 2;
target_dis[i] = td;
// compute a weight
weights.push_back (dis_weight (td));
}
}
~ReproduceWithHammingObjective() override {}
};
} // anonymous namespace
// weihgting of distances: it is more important to reproduce small
// distances well
double ReproduceDistancesObjective::dis_weight (double x) const
{
return exp (-dis_weight_factor * x);
}
double ReproduceDistancesObjective::get_source_dis (int i, int j) const
{
return source_dis [i * n + j];
}
// cost = quadratic difference between actual distance and Hamming distance
double ReproduceDistancesObjective::compute_cost (const int *perm) const
{
double cost = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
double wanted = target_dis [i * n + j];
double w = weights [i * n + j];
double actual = get_source_dis (perm[i], perm[j]);
cost += w * sqr (wanted - actual);
}
}
return cost;
}
// what would the cost update be if iw and jw were swapped?
// computed in O(n) instead of O(n^2) for the full re-computation
double ReproduceDistancesObjective::cost_update(
const int *perm, int iw, int jw) const
{
double delta_cost = 0;
for (int i = 0; i < n; i++) {
if (i == iw) {
for (int j = 0; j < n; j++) {
double wanted = target_dis [i * n + j],
w = weights [i * n + j];
double actual = get_source_dis (perm[i], perm[j]);
delta_cost -= w * sqr (wanted - actual);
double new_actual = get_source_dis (
perm[jw],
perm[j == iw ? jw : j == jw ? iw : j]);
delta_cost += w * sqr (wanted - new_actual);
}
} else if (i == jw) {
for (int j = 0; j < n; j++) {
double wanted = target_dis [i * n + j],
w = weights [i * n + j];
double actual = get_source_dis (perm[i], perm[j]);
delta_cost -= w * sqr (wanted - actual);
double new_actual = get_source_dis (
perm[iw],
perm[j == iw ? jw : j == jw ? iw : j]);
delta_cost += w * sqr (wanted - new_actual);
}
} else {
int j = iw;
{
double wanted = target_dis [i * n + j],
w = weights [i * n + j];
double actual = get_source_dis (perm[i], perm[j]);
delta_cost -= w * sqr (wanted - actual);
double new_actual = get_source_dis (perm[i], perm[jw]);
delta_cost += w * sqr (wanted - new_actual);
}
j = jw;
{
double wanted = target_dis [i * n + j],
w = weights [i * n + j];
double actual = get_source_dis (perm[i], perm[j]);
delta_cost -= w * sqr (wanted - actual);
double new_actual = get_source_dis (perm[i], perm[iw]);
delta_cost += w * sqr (wanted - new_actual);
}
}
}
return delta_cost;
}
ReproduceDistancesObjective::ReproduceDistancesObjective (
int n,
const double *source_dis_in,
const double *target_dis_in,
double dis_weight_factor):
dis_weight_factor (dis_weight_factor),
target_dis (target_dis_in)
{
this->n = n;
set_affine_target_dis (source_dis_in);
}
void ReproduceDistancesObjective::compute_mean_stdev (
const double *tab, size_t n2,
double *mean_out, double *stddev_out)
{
double sum = 0, sum2 = 0;
for (int i = 0; i < n2; i++) {
sum += tab [i];
sum2 += tab [i] * tab [i];
}
double mean = sum / n2;
double stddev = sqrt(sum2 / n2 - (sum / n2) * (sum / n2));
*mean_out = mean;
*stddev_out = stddev;
}
void ReproduceDistancesObjective::set_affine_target_dis (
const double *source_dis_in)
{
int n2 = n * n;
double mean_src, stddev_src;
compute_mean_stdev (source_dis_in, n2, &mean_src, &stddev_src);
double mean_target, stddev_target;
compute_mean_stdev (target_dis, n2, &mean_target, &stddev_target);
printf ("map mean %g std %g -> mean %g std %g\n",
mean_src, stddev_src, mean_target, stddev_target);
source_dis.resize (n2);
weights.resize (n2);
for (int i = 0; i < n2; i++) {
// the mapping function
source_dis[i] = (source_dis_in[i] - mean_src) / stddev_src
* stddev_target + mean_target;
// compute a weight
weights [i] = dis_weight (target_dis[i]);
}
}
/****************************************************
* Cost functions: RankingScore
****************************************************/
/// Maintains a 3D table of elementary costs.
/// Accumulates elements based on Hamming distance comparisons
template <typename Ttab, typename Taccu>
struct Score3Computer: PermutationObjective {
int nc;
// cost matrix of size nc * nc *nc
// n_gt (i,j,k) = count of d_gt(x, y-) < d_gt(x, y+)
// where x has PQ code i, y- PQ code j and y+ PQ code k
std::vector<Ttab> n_gt;
/// the cost is a triple loop on the nc * nc * nc matrix of entries.
///
Taccu compute (const int * perm) const
{
Taccu accu = 0;
const Ttab *p = n_gt.data();
for (int i = 0; i < nc; i++) {
int ip = perm [i];
for (int j = 0; j < nc; j++) {
int jp = perm [j];
for (int k = 0; k < nc; k++) {
int kp = perm [k];
if (hamming_dis (ip, jp) <
hamming_dis (ip, kp)) {
accu += *p; // n_gt [ ( i * nc + j) * nc + k];
}
p++;
}
}
}
return accu;
}
/** cost update if entries iw and jw of the permutation would be
* swapped.
*
* The computation is optimized by avoiding elements in the
* nc*nc*nc cube that are known not to change. For nc=256, this
* reduces the nb of cells to visit to about 6/256 th of the
* cells. Practical speedup is about 8x, and the code is quite
* complex :-/
*/
Taccu compute_update (const int *perm, int iw, int jw) const
{
assert (iw != jw);
if (iw > jw) std::swap (iw, jw);
Taccu accu = 0;
const Ttab * n_gt_i = n_gt.data();
for (int i = 0; i < nc; i++) {
int ip0 = perm [i];
int ip = perm [i == iw ? jw : i == jw ? iw : i];
//accu += update_i (perm, iw, jw, ip0, ip, n_gt_i);
accu += update_i_cross (perm, iw, jw,
ip0, ip, n_gt_i);
if (ip != ip0)
accu += update_i_plane (perm, iw, jw,
ip0, ip, n_gt_i);
n_gt_i += nc * nc;
}
return accu;
}
Taccu update_i (const int *perm, int iw, int jw,
int ip0, int ip, const Ttab * n_gt_i) const
{
Taccu accu = 0;
const Ttab *n_gt_ij = n_gt_i;
for (int j = 0; j < nc; j++) {
int jp0 = perm[j];
int jp = perm [j == iw ? jw : j == jw ? iw : j];
for (int k = 0; k < nc; k++) {
int kp0 = perm [k];
int kp = perm [k == iw ? jw : k == jw ? iw : k];
int ng = n_gt_ij [k];
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
accu += ng;
}
if (hamming_dis (ip0, jp0) < hamming_dis (ip0, kp0)) {
accu -= ng;
}
}
n_gt_ij += nc;
}
return accu;
}
// 2 inner loops for the case ip0 != ip
Taccu update_i_plane (const int *perm, int iw, int jw,
int ip0, int ip, const Ttab * n_gt_i) const
{
Taccu accu = 0;
const Ttab *n_gt_ij = n_gt_i;
for (int j = 0; j < nc; j++) {
if (j != iw && j != jw) {
int jp = perm[j];
for (int k = 0; k < nc; k++) {
if (k != iw && k != jw) {
int kp = perm [k];
Ttab ng = n_gt_ij [k];
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
accu += ng;
}
if (hamming_dis (ip0, jp) < hamming_dis (ip0, kp)) {
accu -= ng;
}
}
}
}
n_gt_ij += nc;
}
return accu;
}
/// used for the 8 cells were the 3 indices are swapped
inline Taccu update_k (const int *perm, int iw, int jw,
int ip0, int ip, int jp0, int jp,
int k,
const Ttab * n_gt_ij) const
{
Taccu accu = 0;
int kp0 = perm [k];
int kp = perm [k == iw ? jw : k == jw ? iw : k];
Ttab ng = n_gt_ij [k];
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
accu += ng;
}
if (hamming_dis (ip0, jp0) < hamming_dis (ip0, kp0)) {
accu -= ng;
}
return accu;
}
/// compute update on a line of k's, where i and j are swapped
Taccu update_j_line (const int *perm, int iw, int jw,
int ip0, int ip, int jp0, int jp,
const Ttab * n_gt_ij) const
{
Taccu accu = 0;
for (int k = 0; k < nc; k++) {
if (k == iw || k == jw) continue;
int kp = perm [k];
Ttab ng = n_gt_ij [k];
if (hamming_dis (ip, jp) < hamming_dis (ip, kp)) {
accu += ng;
}
if (hamming_dis (ip0, jp0) < hamming_dis (ip0, kp)) {
accu -= ng;
}
}
return accu;
}
/// considers the 2 pairs of crossing lines j=iw or jw and k = iw or kw
Taccu update_i_cross (const int *perm, int iw, int jw,
int ip0, int ip, const Ttab * n_gt_i) const
{
Taccu accu = 0;
const Ttab *n_gt_ij = n_gt_i;
for (int j = 0; j < nc; j++) {
int jp0 = perm[j];
int jp = perm [j == iw ? jw : j == jw ? iw : j];
accu += update_k (perm, iw, jw, ip0, ip, jp0, jp, iw, n_gt_ij);
accu += update_k (perm, iw, jw, ip0, ip, jp0, jp, jw, n_gt_ij);
if (jp != jp0)
accu += update_j_line (perm, iw, jw, ip0, ip, jp0, jp, n_gt_ij);
n_gt_ij += nc;
}
return accu;
}
/// PermutationObjective implementeation (just negates the scores
/// for minimization)
double compute_cost(const int* perm) const override {
return -compute(perm);
}
double cost_update(const int* perm, int iw, int jw) const override {
double ret = -compute_update(perm, iw, jw);
return ret;
}
~Score3Computer() override {}
};
struct IndirectSort {
const float *tab;
bool operator () (int a, int b) {return tab[a] < tab[b]; }
};
struct RankingScore2: Score3Computer<float, double> {
int nbits;
int nq, nb;
const uint32_t *qcodes, *bcodes;
const float *gt_distances;
RankingScore2 (int nbits, int nq, int nb,
const uint32_t *qcodes, const uint32_t *bcodes,
const float *gt_distances):
nbits(nbits), nq(nq), nb(nb), qcodes(qcodes),
bcodes(bcodes), gt_distances(gt_distances)
{
n = nc = 1 << nbits;
n_gt.resize (nc * nc * nc);
init_n_gt ();
}
double rank_weight (int r)
{
return 1.0 / (r + 1);
}
/// count nb of i, j in a x b st. i < j
/// a and b should be sorted on input
/// they are the ranks of j and k respectively.
/// specific version for diff-of-rank weighting, cannot optimized
/// with a cumulative table
double accum_gt_weight_diff (const std::vector<int> & a,
const std::vector<int> & b)
{
int nb = b.size(), na = a.size();
double accu = 0;
int j = 0;
for (int i = 0; i < na; i++) {
int ai = a[i];
while (j < nb && ai >= b[j]) j++;
double accu_i = 0;
for (int k = j; k < b.size(); k++)
accu_i += rank_weight (b[k] - ai);
accu += rank_weight (ai) * accu_i;
}
return accu;
}
void init_n_gt ()
{
for (int q = 0; q < nq; q++) {
const float *gtd = gt_distances + q * nb;
const uint32_t *cb = bcodes;// all same codes
float * n_gt_q = & n_gt [qcodes[q] * nc * nc];
printf("init gt for q=%d/%d \r", q, nq); fflush(stdout);
std::vector<int> rankv (nb);
int * ranks = rankv.data();
// elements in each code bin, ordered by rank within each bin
std::vector<std::vector<int> > tab (nc);
{ // build rank table
IndirectSort s = {gtd};
for (int j = 0; j < nb; j++) ranks[j] = j;
std::sort (ranks, ranks + nb, s);
}
for (int rank = 0; rank < nb; rank++) {
int i = ranks [rank];
tab [cb[i]].push_back (rank);
}
// this is very expensive. Any suggestion for improvement
// welcome.
for (int i = 0; i < nc; i++) {
std::vector<int> & di = tab[i];
for (int j = 0; j < nc; j++) {
std::vector<int> & dj = tab[j];
n_gt_q [i * nc + j] += accum_gt_weight_diff (di, dj);
}
}
}
}
};
/*****************************************
* PolysemousTraining
******************************************/
PolysemousTraining::PolysemousTraining ()
{
optimization_type = OT_ReproduceDistances_affine;
ntrain_permutation = 0;
dis_weight_factor = log(2);
}
void PolysemousTraining::optimize_reproduce_distances (
ProductQuantizer &pq) const
{
int dsub = pq.dsub;
int n = pq.ksub;
int nbits = pq.nbits;
#pragma omp parallel for
for (int m = 0; m < pq.M; m++) {
std::vector<double> dis_table;
// printf ("Optimizing quantizer %d\n", m);
float * centroids = pq.get_centroids (m, 0);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dis_table.push_back (fvec_L2sqr (centroids + i * dsub,
centroids + j * dsub,
dsub));
}
}
std::vector<int> perm (n);
ReproduceWithHammingObjective obj (
nbits, dis_table,
dis_weight_factor);
SimulatedAnnealingOptimizer optim (&obj, *this);
if (log_pattern.size()) {
char fname[256];
snprintf (fname, 256, log_pattern.c_str(), m);
printf ("opening log file %s\n", fname);
optim.logfile = fopen (fname, "w");
FAISS_THROW_IF_NOT_MSG (optim.logfile, "could not open logfile");
}
double final_cost = optim.run_optimization (perm.data());
if (verbose > 0) {
printf ("SimulatedAnnealingOptimizer for m=%d: %g -> %g\n",
m, optim.init_cost, final_cost);
}
if (log_pattern.size()) fclose (optim.logfile);
std::vector<float> centroids_copy;
for (int i = 0; i < dsub * n; i++)
centroids_copy.push_back (centroids[i]);
for (int i = 0; i < n; i++)
memcpy (centroids + perm[i] * dsub,
centroids_copy.data() + i * dsub,
dsub * sizeof(centroids[0]));
}
}
void PolysemousTraining::optimize_ranking (
ProductQuantizer &pq, size_t n, const float *x) const
{
int dsub = pq.dsub;
int nbits = pq.nbits;
std::vector<uint8_t> all_codes (pq.code_size * n);
pq.compute_codes (x, all_codes.data(), n);
FAISS_THROW_IF_NOT (pq.byte_per_idx == 1);
if (n == 0)
pq.compute_sdc_table ();
#pragma omp parallel for
for (int m = 0; m < pq.M; m++) {
size_t nq, nb;
std::vector <uint32_t> codes; // query codes, then db codes
std::vector <float> gt_distances; // nq * nb matrix of distances
if (n > 0) {
std::vector<float> xtrain (n * dsub);
for (int i = 0; i < n; i++)
memcpy (xtrain.data() + i * dsub,
x + i * pq.d + m * dsub,
sizeof(float) * dsub);
codes.resize (n);
for (int i = 0; i < n; i++)
codes [i] = all_codes [i * pq.code_size + m];
nq = n / 4; nb = n - nq;
const float *xq = xtrain.data();
const float *xb = xq + nq * dsub;
gt_distances.resize (nq * nb);
pairwise_L2sqr (dsub,
nq, xq,
nb, xb,
gt_distances.data());
} else {
nq = nb = pq.ksub;
codes.resize (2 * nq);
for (int i = 0; i < nq; i++)
codes[i] = codes [i + nq] = i;
gt_distances.resize (nq * nb);
memcpy (gt_distances.data (),
pq.sdc_table.data () + m * nq * nb,
sizeof (float) * nq * nb);
}
double t0 = getmillisecs ();
PermutationObjective *obj = new RankingScore2 (
nbits, nq, nb,
codes.data(), codes.data() + nq,
gt_distances.data ());
ScopeDeleter1<PermutationObjective> del (obj);
if (verbose > 0) {
printf(" m=%d, nq=%ld, nb=%ld, intialize RankingScore "
"in %.3f ms\n",
m, nq, nb, getmillisecs () - t0);
}
SimulatedAnnealingOptimizer optim (obj, *this);
if (log_pattern.size()) {
char fname[256];
snprintf (fname, 256, log_pattern.c_str(), m);
printf ("opening log file %s\n", fname);
optim.logfile = fopen (fname, "w");
FAISS_THROW_IF_NOT_FMT (optim.logfile,
"could not open logfile %s", fname);
}
std::vector<int> perm (pq.ksub);
double final_cost = optim.run_optimization (perm.data());
printf ("SimulatedAnnealingOptimizer for m=%d: %g -> %g\n",
m, optim.init_cost, final_cost);
if (log_pattern.size()) fclose (optim.logfile);
float * centroids = pq.get_centroids (m, 0);
std::vector<float> centroids_copy;
for (int i = 0; i < dsub * pq.ksub; i++)
centroids_copy.push_back (centroids[i]);
for (int i = 0; i < pq.ksub; i++)
memcpy (centroids + perm[i] * dsub,
centroids_copy.data() + i * dsub,
dsub * sizeof(centroids[0]));
}
}
void PolysemousTraining::optimize_pq_for_hamming (ProductQuantizer &pq,
size_t n, const float *x) const
{
if (optimization_type == OT_None) {
} else if (optimization_type == OT_ReproduceDistances_affine) {
optimize_reproduce_distances (pq);
} else {
optimize_ranking (pq, n, x);
}
pq.compute_sdc_table ();
}
} // namespace faiss