-
Notifications
You must be signed in to change notification settings - Fork 1
/
1030.距离顺序排列矩阵单元格.java
94 lines (92 loc) · 2.53 KB
/
1030.距离顺序排列矩阵单元格.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
* @lc app=leetcode.cn id=1030 lang=java
*
* [1030] 距离顺序排列矩阵单元格
*
* https://leetcode-cn.com/problems/matrix-cells-in-distance-order/description/
*
* algorithms
* Easy (64.55%)
* Likes: 63
* Dislikes: 0
* Total Accepted: 21.4K
* Total Submissions: 30.4K
* Testcase Example: '1\n2\n0\n0'
*
* 给出 R 行 C 列的矩阵,其中的单元格的整数坐标为 (r, c),满足 0 <= r < R 且 0 <= c < C。
*
* 另外,我们在该矩阵中给出了一个坐标为 (r0, c0) 的单元格。
*
* 返回矩阵中的所有单元格的坐标,并按到 (r0, c0) 的距离从最小到最大的顺序排,其中,两单元格(r1, c1) 和 (r2, c2)
* 之间的距离是曼哈顿距离,|r1 - r2| + |c1 - c2|。(你可以按任何满足此条件的顺序返回答案。)
*
*
*
* 示例 1:
*
* 输入:R = 1, C = 2, r0 = 0, c0 = 0
* 输出:[[0,0],[0,1]]
* 解释:从 (r0, c0) 到其他单元格的距离为:[0,1]
*
*
* 示例 2:
*
* 输入:R = 2, C = 2, r0 = 0, c0 = 1
* 输出:[[0,1],[0,0],[1,1],[1,0]]
* 解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2]
* [[0,1],[1,1],[0,0],[1,0]] 也会被视作正确答案。
*
*
* 示例 3:
*
* 输入:R = 2, C = 3, r0 = 1, c0 = 2
* 输出:[[1,2],[0,2],[1,1],[0,1],[1,0],[0,0]]
* 解释:从 (r0, c0) 到其他单元格的距离为:[0,1,1,2,2,3]
* 其他满足题目要求的答案也会被视为正确,例如 [[1,2],[1,1],[0,2],[1,0],[0,1],[0,0]]。
*
*
*
*
* 提示:
*
*
* 1 <= R <= 100
* 1 <= C <= 100
* 0 <= r0 < R
* 0 <= c0 < C
*
*
*/
// @lc code=start
class Solution {
public int[][] allCellsDistOrder(int R, int C, int r0, int c0) {
int[][] ans = new int[R * C][2];
boolean[][] mem = new boolean[R][C];
int i = 0;
Queue<int[]> queue = new LinkedList<>();
queue.add(new int[]{r0, c0});
while (!queue.isEmpty()) {
int[] cur = queue.poll();
int r = cur[0];
int c = cur[1];
if (r < 0 || r >= R) {
continue;
}
if (c < 0 || c >= C) {
continue;
}
if (mem[r][c]) {
continue;
}
mem[r][c] = true;
ans[i] = new int[]{r, c};
queue.add(new int[]{r - 1, c});
queue.add(new int[]{r + 1, c});
queue.add(new int[]{r, c - 1});
queue.add(new int[]{r, c + 1});
i++;
}
return ans;
}
}
// @lc code=end