forked from ZhaoJ9014/face.evoLVe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
253 lines (212 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from config import configurations
from backbone.model_resnet import ResNet_50, ResNet_101, ResNet_152
from backbone.model_irse import IR_50, IR_101, IR_152, IR_SE_50, IR_SE_101, IR_SE_152
from head.metrics import ArcFace, CosFace, SphereFace, Am_softmax
from loss.focal import FocalLoss
from util.utils import make_weights_for_balanced_classes, get_val_data, separate_irse_bn_paras, separate_resnet_bn_paras, warm_up_lr, schedule_lr, perform_val, get_time, buffer_val, AverageMeter, accuracy
from tensorboardX import SummaryWriter
from tqdm import tqdm
import os
if __name__ == '__main__':
#======= hyperparameters & data loaders =======#
cfg = configurations[1]
SEED = cfg['SEED'] # random seed for reproduce results
torch.manual_seed(SEED)
DATA_ROOT = cfg['DATA_ROOT'] # the parent root where your train/val/test data are stored
MODEL_ROOT = cfg['MODEL_ROOT'] # the root to buffer your checkpoints
LOG_ROOT = cfg['LOG_ROOT'] # the root to log your train/val status
BACKBONE_RESUME_ROOT = cfg['BACKBONE_RESUME_ROOT'] # the root to resume training from a saved checkpoint
HEAD_RESUME_ROOT = cfg['HEAD_RESUME_ROOT'] # the root to resume training from a saved checkpoint
BACKBONE_NAME = cfg['BACKBONE_NAME'] # support: ['ResNet_50', 'ResNet_101', 'ResNet_152', 'IR_50', 'IR_101', 'IR_152', 'IR_SE_50', 'IR_SE_101', 'IR_SE_152']
HEAD_NAME = cfg['HEAD_NAME'] # support: ['Softmax', 'ArcFace', 'CosFace', 'SphereFace', 'Am_softmax']
LOSS_NAME = cfg['LOSS_NAME'] # support: ['Focal', 'Softmax']
INPUT_SIZE = cfg['INPUT_SIZE']
RGB_MEAN = cfg['RGB_MEAN'] # for normalize inputs
RGB_STD = cfg['RGB_STD']
EMBEDDING_SIZE = cfg['EMBEDDING_SIZE'] # feature dimension
BATCH_SIZE = cfg['BATCH_SIZE']
DROP_LAST = cfg['DROP_LAST'] # whether drop the last batch to ensure consistent batch_norm statistics
LR = cfg['LR'] # initial LR
NUM_EPOCH = cfg['NUM_EPOCH']
WEIGHT_DECAY = cfg['WEIGHT_DECAY']
MOMENTUM = cfg['MOMENTUM']
STAGES = cfg['STAGES'] # epoch stages to decay learning rate
DEVICE = cfg['DEVICE']
MULTI_GPU = cfg['MULTI_GPU'] # flag to use multiple GPUs
GPU_ID = cfg['GPU_ID'] # specify your GPU ids
PIN_MEMORY = cfg['PIN_MEMORY']
NUM_WORKERS = cfg['NUM_WORKERS']
print("=" * 60)
print("Overall Configurations:")
print(cfg)
print("=" * 60)
writer = SummaryWriter(LOG_ROOT) # writer for buffering intermedium results
train_transform = transforms.Compose([ # refer to https://pytorch.org/docs/stable/torchvision/transforms.html for more build-in online data augmentation
transforms.Resize([int(128 * INPUT_SIZE[0] / 112), int(128 * INPUT_SIZE[0] / 112)]), # smaller side resized
transforms.RandomCrop([INPUT_SIZE[0], INPUT_SIZE[1]]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean = RGB_MEAN,
std = RGB_STD),
])
dataset_train = datasets.ImageFolder(os.path.join(DATA_ROOT, 'imgs'), train_transform)
# create a weighted random sampler to process imbalanced data
weights = make_weights_for_balanced_classes(dataset_train.imgs, len(dataset_train.classes))
weights = torch.DoubleTensor(weights)
sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(weights))
train_loader = torch.utils.data.DataLoader(
dataset_train, batch_size = BATCH_SIZE, sampler = sampler, pin_memory = PIN_MEMORY,
num_workers = NUM_WORKERS, drop_last = DROP_LAST
)
NUM_CLASS = len(train_loader.dataset.classes)
print("Number of Training Classes: {}".format(NUM_CLASS))
lfw, cfp_ff, cfp_fp, agedb, calfw, cplfw, vgg2_fp, lfw_issame, cfp_ff_issame, cfp_fp_issame, agedb_issame, calfw_issame, cplfw_issame, vgg2_fp_issame = get_val_data(DATA_ROOT)
#======= model & loss & optimizer =======#
BACKBONE_DICT = {'ResNet_50': ResNet_50(INPUT_SIZE),
'ResNet_101': ResNet_101(INPUT_SIZE),
'ResNet_152': ResNet_152(INPUT_SIZE),
'IR_50': IR_50(INPUT_SIZE),
'IR_101': IR_101(INPUT_SIZE),
'IR_152': IR_152(INPUT_SIZE),
'IR_SE_50': IR_SE_50(INPUT_SIZE),
'IR_SE_101': IR_SE_101(INPUT_SIZE),
'IR_SE_152': IR_SE_152(INPUT_SIZE)}
BACKBONE = BACKBONE_DICT[BACKBONE_NAME]
print("=" * 60)
print(BACKBONE)
print("{} Backbone Generated".format(BACKBONE_NAME))
print("=" * 60)
HEAD_DICT = {'ArcFace': ArcFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
'CosFace': CosFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
'SphereFace': SphereFace(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID),
'Am_softmax': Am_softmax(in_features = EMBEDDING_SIZE, out_features = NUM_CLASS, device_id = GPU_ID)}
HEAD = HEAD_DICT[HEAD_NAME]
print("=" * 60)
print(HEAD)
print("{} Head Generated".format(HEAD_NAME))
print("=" * 60)
LOSS_DICT = {'Focal': FocalLoss(),
'Softmax': nn.CrossEntropyLoss()}
LOSS = LOSS_DICT[LOSS_NAME]
print("=" * 60)
print(LOSS)
print("{} Loss Generated".format(LOSS_NAME))
print("=" * 60)
if BACKBONE_NAME.find("IR") >= 0:
backbone_paras_only_bn, backbone_paras_wo_bn = separate_irse_bn_paras(BACKBONE) # separate batch_norm parameters from others; do not do weight decay for batch_norm parameters to improve the generalizability
_, head_paras_wo_bn = separate_irse_bn_paras(HEAD)
else:
backbone_paras_only_bn, backbone_paras_wo_bn = separate_resnet_bn_paras(BACKBONE) # separate batch_norm parameters from others; do not do weight decay for batch_norm parameters to improve the generalizability
_, head_paras_wo_bn = separate_resnet_bn_paras(HEAD)
OPTIMIZER = optim.SGD([{'params': backbone_paras_wo_bn + head_paras_wo_bn, 'weight_decay': WEIGHT_DECAY}, {'params': backbone_paras_only_bn}], lr = LR, momentum = MOMENTUM)
print("=" * 60)
print(OPTIMIZER)
print("Optimizer Generated")
print("=" * 60)
# optionally resume from a checkpoint
if BACKBONE_RESUME_ROOT and HEAD_RESUME_ROOT:
print("=" * 60)
if os.path.isfile(BACKBONE_RESUME_ROOT) and os.path.isfile(HEAD_RESUME_ROOT):
print("Loading Backbone Checkpoint '{}'".format(BACKBONE_RESUME_ROOT))
BACKBONE.load_state_dict(torch.load(BACKBONE_RESUME_ROOT))
print("Loading Head Checkpoint '{}'".format(HEAD_RESUME_ROOT))
HEAD.load_state_dict(torch.load(HEAD_RESUME_ROOT))
else:
print("No Checkpoint Found at '{}' and '{}'. Please Have a Check or Continue to Train from Scratch".format(BACKBONE_RESUME_ROOT, HEAD_RESUME_ROOT))
print("=" * 60)
if MULTI_GPU:
# multi-GPU setting
BACKBONE = nn.DataParallel(BACKBONE, device_ids = GPU_ID)
BACKBONE = BACKBONE.to(DEVICE)
else:
# single-GPU setting
BACKBONE = BACKBONE.to(DEVICE)
#======= train & validation & save checkpoint =======#
DISP_FREQ = len(train_loader) // 100 # frequency to display training loss & acc
NUM_EPOCH_WARM_UP = NUM_EPOCH // 25 # use the first 1/25 epochs to warm up
NUM_BATCH_WARM_UP = len(train_loader) * NUM_EPOCH_WARM_UP # use the first 1/25 epochs to warm up
batch = 0 # batch index
for epoch in range(NUM_EPOCH): # start training process
if epoch == STAGES[0]: # adjust LR for each training stage after warm up, you can also choose to adjust LR manually (with slight modification) once plaueau observed
schedule_lr(OPTIMIZER)
if epoch == STAGES[1]:
schedule_lr(OPTIMIZER)
if epoch == STAGES[2]:
schedule_lr(OPTIMIZER)
BACKBONE.train() # set to training mode
HEAD.train()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
for inputs, labels in tqdm(iter(train_loader)):
if (epoch + 1 <= NUM_EPOCH_WARM_UP) and (batch + 1 <= NUM_BATCH_WARM_UP): # adjust LR for each training batch during warm up
warm_up_lr(batch + 1, NUM_BATCH_WARM_UP, LR, OPTIMIZER)
# compute output
inputs = inputs.to(DEVICE)
labels = labels.to(DEVICE).long()
features = BACKBONE(inputs)
outputs = HEAD(features, labels)
loss = LOSS(outputs, labels)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, labels, topk = (1, 5))
losses.update(loss.data.item(), inputs.size(0))
top1.update(prec1.data.item(), inputs.size(0))
top5.update(prec5.data.item(), inputs.size(0))
# compute gradient and do SGD step
OPTIMIZER.zero_grad()
loss.backward()
OPTIMIZER.step()
# dispaly training loss & acc every DISP_FREQ
if ((batch + 1) % DISP_FREQ == 0) and batch != 0:
print("=" * 60)
print('Epoch {}/{} Batch {}/{}\t'
'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch + 1, NUM_EPOCH, batch + 1, len(train_loader) * NUM_EPOCH, loss = losses, top1 = top1, top5 = top5))
print("=" * 60)
batch += 1 # batch index
# training statistics per epoch (buffer for visualization)
epoch_loss = losses.avg
epoch_acc = top1.avg
writer.add_scalar("Training_Loss", epoch_loss, epoch + 1)
writer.add_scalar("Training_Accuracy", epoch_acc, epoch + 1)
print("=" * 60)
print('Epoch: {}/{}\t'
'Training Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Training Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Training Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch + 1, NUM_EPOCH, loss = losses, top1 = top1, top5 = top5))
print("=" * 60)
# perform validation & save checkpoints per epoch
# validation statistics per epoch (buffer for visualization)
print("=" * 60)
print("Perform Evaluation on LFW, CFP_FF, CFP_FP, AgeDB, CALFW, CPLFW and VGG2_FP, and Save Checkpoints...")
accuracy_lfw, best_threshold_lfw, roc_curve_lfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, lfw, lfw_issame)
buffer_val(writer, "LFW", accuracy_lfw, best_threshold_lfw, roc_curve_lfw, epoch + 1)
accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_ff, cfp_ff_issame)
buffer_val(writer, "CFP_FF", accuracy_cfp_ff, best_threshold_cfp_ff, roc_curve_cfp_ff, epoch + 1)
accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cfp_fp, cfp_fp_issame)
buffer_val(writer, "CFP_FP", accuracy_cfp_fp, best_threshold_cfp_fp, roc_curve_cfp_fp, epoch + 1)
accuracy_agedb, best_threshold_agedb, roc_curve_agedb = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, agedb, agedb_issame)
buffer_val(writer, "AgeDB", accuracy_agedb, best_threshold_agedb, roc_curve_agedb, epoch + 1)
accuracy_calfw, best_threshold_calfw, roc_curve_calfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, calfw, calfw_issame)
buffer_val(writer, "CALFW", accuracy_calfw, best_threshold_calfw, roc_curve_calfw, epoch + 1)
accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, cplfw, cplfw_issame)
buffer_val(writer, "CPLFW", accuracy_cplfw, best_threshold_cplfw, roc_curve_cplfw, epoch + 1)
accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp = perform_val(MULTI_GPU, DEVICE, EMBEDDING_SIZE, BATCH_SIZE, BACKBONE, vgg2_fp, vgg2_fp_issame)
buffer_val(writer, "VGGFace2_FP", accuracy_vgg2_fp, best_threshold_vgg2_fp, roc_curve_vgg2_fp, epoch + 1)
print("Epoch {}/{}, Evaluation: LFW Acc: {}, CFP_FF Acc: {}, CFP_FP Acc: {}, AgeDB Acc: {}, CALFW Acc: {}, CPLFW Acc: {}, VGG2_FP Acc: {}".format(epoch + 1, NUM_EPOCH, accuracy_lfw, accuracy_cfp_ff, accuracy_cfp_fp, accuracy_agedb, accuracy_calfw, accuracy_cplfw, accuracy_vgg2_fp))
print("=" * 60)
# save checkpoints per epoch
if MULTI_GPU:
torch.save(BACKBONE.module.state_dict(), os.path.join(MODEL_ROOT, "Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(BACKBONE_NAME, epoch + 1, batch, get_time())))
torch.save(HEAD.state_dict(), os.path.join(MODEL_ROOT, "Head_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(HEAD_NAME, epoch + 1, batch, get_time())))
else:
torch.save(BACKBONE.state_dict(), os.path.join(MODEL_ROOT, "Backbone_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(BACKBONE_NAME, epoch + 1, batch, get_time())))
torch.save(HEAD.state_dict(), os.path.join(MODEL_ROOT, "Head_{}_Epoch_{}_Batch_{}_Time_{}_checkpoint.pth".format(HEAD_NAME, epoch + 1, batch, get_time())))