forked from google/differential-privacy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmechanism_calibration_test.py
212 lines (172 loc) · 8.35 KB
/
mechanism_calibration_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright 2022, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for mechanism_calibration."""
from absl.testing import absltest
from absl.testing import parameterized
import attr
import numpy as np
from dp_accounting import dp_event
from dp_accounting import mechanism_calibration
from dp_accounting import privacy_accountant
@attr.define
class MockEvent(dp_event.DpEvent):
param: float
class MockAccountant(privacy_accountant.PrivacyAccountant):
def __init__(self, value_to_epsilon):
super().__init__(
privacy_accountant.NeighboringRelation.ADD_OR_REMOVE_ONE)
self._value = 0.0
self._value_to_epsilon = value_to_epsilon
def supports(self, event: dp_event.DpEvent) -> bool:
return True
def _compose(self, event: dp_event.DpEvent, count: int = 1):
self._value = event.param
def get_epsilon(self, target_delta: float) -> float:
return self._value_to_epsilon(self._value)
class MechanismCalibrationTest(parameterized.TestCase):
@parameterized.parameters(
{'eps_fn': lambda x: x, 'expected': 2.0},
{'eps_fn': lambda x: 4 - x, 'expected': 2.0},
{'eps_fn': np.square, 'expected': np.sqrt(2)},
{'eps_fn': np.cbrt, 'expected': 8.0},
{'eps_fn': lambda x: (x - 5) ** 3 + 2, 'expected': 5},
{'eps_fn': lambda x: np.cos(x / 3) + 2, 'expected': 3 * np.pi / 2},
{'eps_fn': lambda x: np.sin(x - 5) + (x + 3) / 4, 'expected': 5},
{'eps_fn': lambda x: (13 - x) / 4 - np.sin(x - 5), 'expected': 5},
)
def test_basic_inversion(self, eps_fn, expected):
value = mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(eps_fn), MockEvent, 2, 0,
mechanism_calibration.ExplicitBracketInterval(0, 10), tol=1e-12)
self.assertIsInstance(value, float)
self.assertAlmostEqual(value, expected)
accountant = MockAccountant(eps_fn)
accountant.compose(MockEvent(value))
epsilon = accountant.get_epsilon(0)
self.assertLessEqual(epsilon, 2)
@parameterized.parameters(
{'eps_fn': lambda x: -1 if x < 0 else 1},
{'eps_fn': lambda x: 1 if x < 0 else -1},
{'eps_fn': lambda x: x - 1 if x < 0 else x + 1},
{'eps_fn': lambda x: -2 - x if x < 0 else 2 - x},
{'eps_fn': lambda x: x + 2 if x < 0 else x - 2},
{'eps_fn': lambda x: 1 - x if x < 0 else -1 - x},
)
def test_discontinuous(self, eps_fn):
value = mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(eps_fn), MockEvent, 0, 0,
mechanism_calibration.ExplicitBracketInterval(-1, 1), tol=1e-12)
self.assertIsInstance(value, float)
self.assertAlmostEqual(value, 0)
accountant = MockAccountant(eps_fn)
accountant.compose(MockEvent(value))
epsilon = accountant.get_epsilon(0)
self.assertLessEqual(epsilon, 0)
@parameterized.parameters(
{'eps_fn': lambda x: x - 2, 'expected_eps': 0},
{'eps_fn': lambda x: x - 2.1, 'expected_eps': -0.1},
{'eps_fn': lambda x: x - 2.9, 'expected_eps': -0.9},
{'eps_fn': lambda x: 2 - x, 'expected_eps': 0},
{'eps_fn': lambda x: 1.9 - x, 'expected_eps': -0.1},
{'eps_fn': lambda x: 1.1 - x, 'expected_eps': -0.9},
)
def test_discrete(self, eps_fn, expected_eps):
value = mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(eps_fn), MockEvent, 0, 0,
mechanism_calibration.ExplicitBracketInterval(0, 5), discrete=True)
self.assertIsInstance(value, int)
self.assertEqual(value, 2)
accountant = MockAccountant(eps_fn)
accountant.compose(MockEvent(value))
epsilon = accountant.get_epsilon(0)
self.assertAlmostEqual(epsilon, expected_eps)
@parameterized.parameters(
{'epsilon_gap': lambda x: x, 'lower': -1, 'guess': -0.5},
{'epsilon_gap': lambda x: -x, 'lower': -1, 'guess': -0.5},
{'epsilon_gap': lambda x: np.exp(x) - 2, 'lower': 0, 'guess': 0.1},
{'epsilon_gap': lambda x: 1 - np.sqrt(x), 'lower': 0, 'guess': 0.1},
{'epsilon_gap': lambda x: np.log(x) - 20, 'lower': 1, 'guess': 2},
)
def test_search_for_explicit_bracket_interval(
self, epsilon_gap, lower, guess):
lower_value = epsilon_gap(lower)
interval = mechanism_calibration._search_for_explicit_bracket_interval(
mechanism_calibration.LowerEndpointAndGuess(lower, guess), epsilon_gap)
upper_value = epsilon_gap(interval.endpoint_2)
self.assertLessEqual(lower_value * upper_value, 0)
def test_raises_unknown_bracket_interval_type(self):
class UnknownBracketInterval(mechanism_calibration.BracketInterval):
pass
with self.assertRaisesRegex(TypeError, 'Unrecognized bracket_interval'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 1.0, 0,
UnknownBracketInterval())
def test_raises_mfa_not_callable(self):
with self.assertRaisesRegex(TypeError, 'callable'):
mechanism_calibration.calibrate_dp_mechanism(
'not a callable', MockEvent, 1.0, 0,
mechanism_calibration.ExplicitBracketInterval(0, 5))
def test_raises_mefv_not_callable(self):
with self.assertRaisesRegex(TypeError, 'callable'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), 'not a callable', 1.0, 0,
mechanism_calibration.ExplicitBracketInterval(0, 5))
def test_raises_target_epsilon_negative(self):
with self.assertRaisesRegex(ValueError, 'nonnegative'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, -1.0, 0,
mechanism_calibration.ExplicitBracketInterval(0, 5))
def test_raises_target_delta_out_of_range(self):
with self.assertRaisesRegex(ValueError, 'in range'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 0.0, -0.1,
mechanism_calibration.ExplicitBracketInterval(0, 5))
with self.assertRaisesRegex(ValueError, 'in range'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 0.0, 1.1,
mechanism_calibration.ExplicitBracketInterval(0, 5))
def test_bad_bracket_interval(self):
with self.assertRaisesRegex(ValueError, 'Bracket endpoints'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 1.0, 0.0,
mechanism_calibration.ExplicitBracketInterval(2, 5))
with self.assertRaisesRegex(ValueError, 'Bracket endpoints'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 1.0, 0.0,
mechanism_calibration.ExplicitBracketInterval(-2, 0))
with self.assertRaisesRegex(ValueError, 'must be less than'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 1.0, 0.0,
mechanism_calibration.LowerEndpointAndGuess(2, 0))
def test_negative_tol(self):
with self.assertRaisesRegex(ValueError, 'tol'):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 1.0, 0.0,
mechanism_calibration.LowerEndpointAndGuess(0, 1), tol=-1)
def test_no_bracket_interval_found(self):
with self.assertRaises(mechanism_calibration.NoBracketIntervalFoundError):
mechanism_calibration.calibrate_dp_mechanism(
lambda: MockAccountant(lambda x: x), MockEvent, 1.0e10, 0.0,
mechanism_calibration.LowerEndpointAndGuess(0, 1))
def test_nonempty_accountant(self):
def make_fresh_accountant():
accountant = MockAccountant(lambda x: x)
accountant.compose(MockEvent(1.0))
return accountant
with self.assertRaises(mechanism_calibration.NonEmptyAccountantError):
mechanism_calibration.calibrate_dp_mechanism(
make_fresh_accountant, MockEvent, 0.5, 0.0,
mechanism_calibration.ExplicitBracketInterval(0, 1))
if __name__ == '__main__':
absltest.main()