-
Notifications
You must be signed in to change notification settings - Fork 224
/
test-batchlstm.cc
145 lines (138 loc) · 3.5 KB
/
test-batchlstm.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#include <assert.h>
#include <math.h>
#include <iomanip>
#include <iostream>
#include <iostream>
#include <memory>
#include <string>
#include <unistd.h> // unlink
#include <vector>
#include "clstm.h"
#include "extras.h"
#include "utils.h"
using std_string = std::string;
#define string std_string
using std::vector;
using std::shared_ptr;
using std::unique_ptr;
using std::to_string;
using std::make_pair;
using std::cout;
using std::stoi;
using namespace Eigen;
using namespace ocropus;
int ntrain = getienv("ntrain", 100000);
int ntest = getienv("ntest", 1000);
int nfeatures = getienv("nfeatures", 1);
int trainbatch = getienv("trainbatch", 1);
int testbatch = getienv("testbatch", 1);
int seqlength = getienv("seqlength", 20);
double lrate = getdenv("lrate", 1e-4);
void gentest(Sequence &xs, Sequence &ys, int batchsize = 1) {
int N = seqlength;
int d = nfeatures;
xs.resize(N, d, batchsize);
xs.zero();
ys.resize(N, 2, batchsize);
ys.zero();
for (int b = 0; b < batchsize; b++) {
ys[0].v(0, b) = 1;
for (int t = 0; t < N; t++) {
int out = (drand48() < 0.3);
for (int i = 0; i < d; i++) xs[t].v(i, b) = out;
if (t < N - 1) ys[t + 1].v(out, b) = 1.0;
}
}
}
Float maxerr(Sequence &xs, Sequence &ys) {
Float threshold = getdenv("threshold", 0.1);
Float merr = 0.0;
for (int t = 0; t < xs.size(); t++) {
for (int i = 0; i < xs.rows(); i++) {
for (int j = 0; j < ys.cols(); j++) {
Float err = fabs(xs[t].v(i, j) - ys[t].v(i, j));
if (err > threshold) {
print("t", t, "i", i, "b", j, "err", err, "xs", xs[t].v(i, j), "ys",
ys[t].v(i, j));
assert(err <= threshold);
}
merr = fmax(err, merr);
}
}
}
return merr;
}
void printseq(Sequence &s) {
for (int i = 0; i < s.rows(); i++) {
for (int t = 0; t < s.size(); t++) {
for (int b = 0; b < s.cols(); b++) {
cerr << std::setw(3) << int(99.999 * s[t].v(i, b));
}
cerr << "|";
}
cerr << endl;
}
}
double test_net(Network net) {
Float merr = 0.0;
for (int i = 0; i < ntest; i++) {
Sequence xs, ys;
gentest(xs, ys, testbatch);
set_inputs(net, xs);
net->forward();
if (getienv("verbose", 0)) {
print("xs");
printseq(xs);
print("ys");
printseq(ys);
print("outputs");
printseq(net->outputs);
check_normalized(net->outputs);
}
Float err = maxerr(net->outputs, ys);
if (err > merr) merr = err;
}
return merr;
}
int main(int argc, char **argv) {
Network net;
int gpu = getienv("gpu", -1);
net = make_net(
"lstm1",
{{"ninput", nfeatures}, {"nhidden", 4}, {"noutput", 2}, {"gpu", gpu}});
net->setLearningRate(lrate, 0.9);
save_net("__test0__.clstm", net);
unlink("__test0__.clstm");
print("training 1:4:2 network to learn delay");
for (int i = 0; i < ntrain / trainbatch; i++) {
Sequence xs, ys;
gentest(xs, ys, trainbatch);
set_inputs(net, xs);
net->forward();
check_normalized(net->outputs);
set_targets(net, ys);
net->backward();
sgd_update(net);
}
network_detail(net);
double merr0 = test_net(net);
if (merr0 > 0.1) {
print("FAILED (pre-save)", merr0);
exit(1);
} else {
print("OK (pre-save)", merr0);
}
print("saving");
save_net("__test__.clstm", net);
net.reset();
print("loading");
net = load_net("__test__.clstm");
double merr = test_net(net);
unlink("__test__.clstm");
if (merr > 0.1) {
print("FAILED", merr);
exit(1);
} else {
print("OK", merr);
}
}