From 6d8889b6f0330526cf413b3408bbf21904860d74 Mon Sep 17 00:00:00 2001 From: "James R. Maddison" Date: Tue, 9 Jul 2024 10:18:23 +0100 Subject: [PATCH] FEniCS backend: Remove custom interpolation code --- AUTHORS | 5 +- tests/fenics/test_equations.py | 166 ---------- tlm_adjoint/fenics/interpolation.py | 454 +--------------------------- 3 files changed, 9 insertions(+), 616 deletions(-) diff --git a/AUTHORS b/AUTHORS index 42d84bb3..6aab444d 100644 --- a/AUTHORS +++ b/AUTHORS @@ -1,3 +1,6 @@ James R. Maddison (j.r.maddison@ed.ac.uk) - The University of Edinburgh -Joe A. Todd - The University of Edinburgh David A. Ham (david.ham@imperial.ac.uk) - Imperial College London + +tlm_adjoint has also been contributed to by + +Joe A. Todd - The University of Edinburgh diff --git a/tests/fenics/test_equations.py b/tests/fenics/test_equations.py index f401abbb..b796ae7b 100644 --- a/tests/fenics/test_equations.py +++ b/tests/fenics/test_equations.py @@ -212,172 +212,6 @@ def forward(a, b): assert min_order > 1.99 -@pytest.mark.fenics -@pytest.mark.parametrize("N_x, N_y, N_z", [(5, 5, 2), - (5, 5, 5)]) -@seed_test -def test_Interpolation(setup_test, test_leaks, test_ghost_modes, - N_x, N_y, N_z): - mesh = UnitCubeMesh(N_x, N_y, N_z) - X = SpatialCoordinate(mesh) - z_space = FunctionSpace(mesh, "Lagrange", 3) - if DEFAULT_COMM.size > 1: - y_space = FunctionSpace(mesh, "Discontinuous Lagrange", 3) - x_space = FunctionSpace(mesh, "Lagrange", 2) - - # Test optimization: Use to cache the interpolation matrix - P = [None] - - def forward(z): - if DEFAULT_COMM.size > 1: - y = Function(y_space, name="y") - LocalProjection(y, z).solve() - else: - y = z - - x = Function(x_space, name="x") - eq = Interpolation(x, y, P=P[0], tolerance=1.0e-15) - eq.solve() - P[0] = eq._B[0]._A._P - - J = Functional(name="J") - J.assign((dot(x + Constant(1.0), x + Constant(1.0)) ** 2) * dx) - return x, J - - z = Function(z_space, name="z", static=True) - interpolate_expression(z, - sin(pi * X[0]) * sin(2.0 * pi * X[1]) * exp(X[2])) - start_manager() - x, J = forward(z) - stop_manager() - - x_ref = Function(x_space, name="x_ref") - x_ref.interpolate(z) - - x_error = Function(x_space, name="x_error") - var_assign(x_error, x_ref) - var_axpy(x_error, -1.0, x) - - x_error_norm = var_linf_norm(x_error) - info(f"Error norm = {x_error_norm:.16e}") - assert x_error_norm < 1.0e-13 - - J_val = J.value - - dJ = compute_gradient(J, z) - - def forward_J(z): - return forward(z)[1] - - min_order = taylor_test(forward_J, z, J_val=J_val, dJ=dJ, seed=1.0e-4) - assert min_order > 1.99 - - ddJ = Hessian(forward_J) - min_order = taylor_test(forward_J, z, J_val=J_val, ddJ=ddJ, seed=1.0e-3) - assert min_order > 2.99 - - min_order = taylor_test_tlm(forward_J, z, tlm_order=1, seed=1.0e-4) - assert min_order > 1.99 - - min_order = taylor_test_tlm_adjoint(forward_J, z, adjoint_order=1, - seed=1.0e-4) - assert min_order > 1.99 - - min_order = taylor_test_tlm_adjoint(forward_J, z, adjoint_order=2, - seed=1.0e-4) - assert min_order > 1.99 - - -@pytest.mark.fenics -@pytest.mark.parametrize("N_x, N_y, N_z", [(2, 2, 2), - (5, 5, 5)]) -@pytest.mark.parametrize("c", [-1.5, 1.5]) -@seed_test -def test_PointInterpolation(setup_test, test_leaks, test_ghost_modes, - N_x, N_y, N_z, - c): - mesh = UnitCubeMesh(N_x, N_y, N_z) - X = SpatialCoordinate(mesh) - z_space = FunctionSpace(mesh, "Lagrange", 3) - if DEFAULT_COMM.size > 1: - y_space = FunctionSpace(mesh, "Discontinuous Lagrange", 3) - X_coords = np.array([[0.1, 0.1, 0.1], - [0.2, 0.3, 0.4], - [0.9, 0.8, 0.7], - [0.4, 0.2, 0.3]], dtype=backend_RealType) - - # Test optimization: Use to cache the interpolation matrix - P = [None] - - def forward(z): - if DEFAULT_COMM.size > 1: - y = Function(y_space, name="y") - LocalProjection(y, z).solve() - else: - y = z - - X_vals = [Constant(name=f"x_{i:d}") - for i in range(X_coords.shape[0])] - eq = PointInterpolation(X_vals, y, X_coords, P=P[0]) - eq.solve() - P[0] = eq._P - - J = Functional(name="J") - for x in X_vals: - term = Constant() - ExprInterpolation(term, x ** 3).solve() - J.addto(term) - return X_vals, J - - z = Function(z_space, name="z", static=True) - if complex_mode: - interpolate_expression(z, pow(X[0], 3) - 1.5 * X[0] * X[1] + c - + 1.0j * pow(X[0], 2)) - else: - interpolate_expression(z, pow(X[0], 3) - 1.5 * X[0] * X[1] + c) - - start_manager() - X_vals, J = forward(z) - stop_manager() - - def x_ref(x): - if complex_mode: - return x[0] ** 3 - 1.5 * x[0] * x[1] + c + 1.0j * x[0] ** 2 - else: - return x[0] ** 3 - 1.5 * x[0] * x[1] + c - - x_error_norm = 0.0 - assert len(X_vals) == len(X_coords) - for x, x_coord in zip(X_vals, X_coords): - x_error_norm = max(x_error_norm, - abs(var_scalar_value(x) - x_ref(x_coord))) - info(f"Error norm = {x_error_norm:.16e}") - assert x_error_norm < 1.0e-13 - - J_val = J.value - - dJ = compute_gradient(J, z) - - def forward_J(z): - return forward(z)[1] - - min_order = taylor_test(forward_J, z, J_val=J_val, dJ=dJ) - assert min_order > 1.99 - - ddJ = Hessian(forward_J) - min_order = taylor_test(forward_J, z, J_val=J_val, ddJ=ddJ) - assert min_order > 2.99 - - min_order = taylor_test_tlm(forward_J, z, tlm_order=1) - assert min_order > 1.99 - - min_order = taylor_test_tlm_adjoint(forward_J, z, adjoint_order=1) - assert min_order > 1.99 - - min_order = taylor_test_tlm_adjoint(forward_J, z, adjoint_order=2) - assert min_order > 1.99 - - @pytest.mark.fenics @seed_test def test_ExprInterpolation(setup_test, test_leaks): diff --git a/tlm_adjoint/fenics/interpolation.py b/tlm_adjoint/fenics/interpolation.py index 44898d33..10ec130f 100644 --- a/tlm_adjoint/fenics/interpolation.py +++ b/tlm_adjoint/fenics/interpolation.py @@ -1,18 +1,12 @@ """Interpolation operations with FEniCS. """ -from .backend import ( - Cell, Mesh, MeshEditor, Point, UserExpression, backend_Constant, - backend_Function, backend_ScalarType, parameters) +from .backend import UserExpression, backend_Constant, backend_Function from ..interface import ( - check_space_type, comm_dup_cached, packed, space_comm, space_eq, - var_assign, var_comm, var_get_values, var_id, var_inner, var_is_scalar, - var_local_size, var_new, var_new_conjugate_dual, var_replacement, - var_scalar_value, var_set_values) + check_space_type, space_eq, var_assign, var_get_values, var_id, var_inner, + var_new_conjugate_dual, var_replacement, var_set_values) -from ..equation import Equation, ZeroAssignment -from ..equations import MatrixActionRHS -from ..linear_equation import LinearEquation, Matrix +from ..equation import ZeroAssignment from ..manager import manager_disabled from .expr import ( @@ -20,9 +14,6 @@ extract_variables) from .variables import ReplacementConstant -import functools -import mpi4py.MPI as MPI -import numpy as np try: import ufl_legacy as ufl except ModuleNotFoundError: @@ -30,9 +21,7 @@ __all__ = \ [ - "ExprInterpolation", - "Interpolation", - "PointInterpolation" + "ExprInterpolation" ] @@ -165,436 +154,3 @@ def tangent_linear(self, tlm_map): return ZeroAssignment(tlm_map[x]) else: return ExprInterpolation(tlm_map[x], tlm_rhs) - - -def function_coords(x): - return x.function_space().tabulate_dof_coordinates() - - -def has_ghost_cells(mesh): - for cell in range(mesh.num_cells()): - if Cell(mesh, cell).is_ghost(): - return True - return False - - -def reorder_gps_disabled(fn): - @functools.wraps(fn) - def wrapped_fn(*args, **kwargs): - reorder_vertices_gps = parameters["reorder_vertices_gps"] - reorder_cells_gps = parameters["reorder_cells_gps"] - parameters["reorder_vertices_gps"] = False - parameters["reorder_cells_gps"] = False - try: - return fn(*args, **kwargs) - finally: - parameters["reorder_vertices_gps"] = reorder_vertices_gps - parameters["reorder_cells_gps"] = reorder_cells_gps - return wrapped_fn - - -@reorder_gps_disabled -def local_mesh(mesh): - coordinates = mesh.coordinates() - cells = mesh.cells() - assert coordinates.shape[0] == mesh.num_vertices() - assert cells.shape[0] == mesh.num_cells() - - local_vertex_map = {} - full_vertex_map = [] - full_cell_map = [] - for full_cell in range(cells.shape[0]): - if not Cell(mesh, full_cell).is_ghost(): - for full_vertex in cells[full_cell, :]: - if full_vertex not in local_vertex_map: - local_vertex_map[full_vertex] = len(full_vertex_map) - full_vertex_map.append(full_vertex) - full_cell_map.append(full_cell) - - l_mesh = Mesh(comm_dup_cached(MPI.COMM_SELF)) - ed = MeshEditor() - ed.open(mesh=l_mesh, type=mesh.cell_name(), tdim=mesh.topology().dim(), - gdim=mesh.geometry().dim(), degree=mesh.geometry().degree()) - - N_local_vertices = len(full_vertex_map) - ed.init_vertices_global(N_local_vertices, N_local_vertices) - - N_local_cells = len(full_cell_map) - ed.init_cells_global(N_local_cells, N_local_cells) - - for local_vertex, full_vertex in enumerate(full_vertex_map): - ed.add_vertex(local_vertex, Point(*coordinates[full_vertex, :])) - - for local_cell, full_cell in enumerate(full_cell_map): - local_vertices = [local_vertex_map[full_vertex] - for full_vertex in cells[full_cell, :]] - ed.add_cell(local_cell, local_vertices) - - ed.close(order=True) - l_mesh.init() - - return l_mesh, full_vertex_map, full_cell_map - - -def point_cells(coords, mesh): - full_cells = np.full(coords.shape[0], -1, dtype=np.int_) - distances = np.full(coords.shape[0], np.nan, dtype=backend_ScalarType) - - if mesh.mpi_comm().size == 1 or not has_ghost_cells(mesh): - full_tree = mesh.bounding_box_tree() - for i in range(coords.shape[0]): - point = Point(*coords[i, :]) - full_cell, distance = full_tree.compute_closest_entity(point) - full_cells[i] = full_cell - distances[i] = distance - else: - l_mesh, _, full_cell_map = local_mesh(mesh) - local_tree = l_mesh.bounding_box_tree() - for i in range(coords.shape[0]): - point = Point(*coords[i, :]) - local_cell, distance = local_tree.compute_closest_entity(point) - full_cells[i] = full_cell_map[local_cell] - distances[i] = distance - - assert (full_cells[i] >= 0).all() - assert (full_cells[i] < mesh.num_cells()).all() - assert (distances >= 0.0).all() - - return full_cells, distances - - -def greedy_coloring(space): - mesh = space.mesh() - dofmap = space.dofmap() - ownership_range = dofmap.ownership_range() - N = ownership_range[1] - ownership_range[0] - - node_node_graph = tuple(set() for _ in range(N)) - for i in range(mesh.num_cells()): - if Cell(mesh, i).is_ghost(): - continue - - cell_nodes = dofmap.cell_dofs(i) - for j in cell_nodes: - for k in cell_nodes: - if j < 0 or j >= N: - raise ValueError("Node index out of range") - if j != k: - node_node_graph[j].add(k) - node_node_graph = tuple(sorted(nodes, reverse=True) - for nodes in node_node_graph) - - # A basic greedy coloring of the (process local) node-node graph, ordered - # using an advancing front - - seen = np.full(N, False, dtype=bool) - colors = np.full(N, -1, dtype=np.int_) - i = 0 - while True: - # Initialize the advancing front - while i < N and colors[i] >= 0: - i += 1 - if i == N: - break # All nodes have been considered - front = [i] - seen[i] = True - while len(front) > 0: - # Consider a new node, and the smallest non-negative available - # color - j = front.pop() - neighbouring_colors = set(colors[k] for k in node_node_graph[j]) - color = 0 - while color in neighbouring_colors: - color += 1 - colors[j] = color - # Advance the front - for k in node_node_graph[j]: - if not seen[k]: - front.append(k) - seen[k] = True - # If the graph is not connected then we need to restart the front with - # a new starting node - if (colors < 0).any(): - raise RuntimeError("Invalid graph coloring") - - return colors - - -def point_owners(x_coords, y_space, *, - tolerance=0.0): - comm = space_comm(y_space) - rank = comm.rank - - y_cells, distances_local = point_cells(x_coords, y_space.mesh()) - distances = np.full(x_coords.shape[0], np.nan, dtype=distances_local.dtype) - comm.Allreduce(distances_local, distances, op=MPI.MIN) - - owner_local = np.full(x_coords.shape[0], rank, dtype=np.int_) - assert len(distances_local) == len(distances) - for i, (distance_local, distance) in enumerate(zip(distances_local, - distances)): - if distance_local != distance: - y_cells[i] = -1 - owner_local[i] = -1 - owner = np.full(x_coords.shape[0], -1, dtype=owner_local.dtype) - comm.Allreduce(owner_local, owner, op=MPI.MAX) - - for i in range(x_coords.shape[0]): - if owner[i] == -1: - raise RuntimeError("Unable to find owning process for point") - if owner[i] == rank: - if distances_local[i] > tolerance: - raise RuntimeError("Unable to find owning process for point") - else: - y_cells[i] = -1 - - return y_cells - - -def interpolation_matrix(x_coords, y, y_cells, y_colors): - y_space = y.function_space() - y_mesh = y_space.mesh() - y_dofmap = y_space.dofmap() - - # Verify process locality assumption - y_ownership_range = y_dofmap.ownership_range() - for y_cell in range(y_mesh.num_cells()): - owned = np.array([j >= y_ownership_range[0] - and j < y_ownership_range[1] - for j in [y_dofmap.local_to_global_index(i) - for i in y_dofmap.cell_dofs(y_cell)]], - dtype=bool) - if owned.any() and not owned.all(): - raise RuntimeError("Non-process-local node-node graph") - - comm = var_comm(y) - if len(y_colors) == 0 or y_colors.min() != 0: - raise ValueError("Invalid graph coloring") - y_colors_N = y_colors.max() + 1 - y_colors_N = comm.allreduce(y_colors_N, op=MPI.MAX) - assert y_colors_N >= 0 - y_nodes = tuple([] for _ in range(y_colors_N)) - for y_node, color in enumerate(y_colors): - y_nodes[color].append(y_node) - - from scipy.sparse import dok_matrix - P = dok_matrix((x_coords.shape[0], var_local_size(y)), - dtype=backend_ScalarType) - - y_v = var_new(y) - for color, y_color_nodes in enumerate(y_nodes): - y_v.vector()[y_color_nodes] = 1.0 - for x_node, y_cell in enumerate(y_cells): - if y_cell < 0: - # Skip -- x_node is owned by a different process - continue - if Cell(y_mesh, y_cell).is_ghost(): - raise RuntimeError("Cannot interpolate within a ghost cell") - - y_cell_nodes = y_dofmap.cell_dofs(y_cell) - y_cell_colors = [y_colors[j] for j in y_cell_nodes] - if color in y_cell_colors: - assert y_cell_colors.count(color) == 1 - i = y_cell_colors.index(color) - else: - continue - y_node = y_cell_nodes[i] - x_v = np.full((1,), np.nan, dtype=backend_ScalarType) - y_v.eval_cell(x_v, x_coords[x_node, :], Cell(y_mesh, y_cell)) - P[x_node, y_node] = x_v[0] - y_v.vector()[y_color_nodes] = 0.0 - - return P.tocsr() - - -class LocalMatrix(Matrix): - def __init__(self, P): - super().__init__(nl_deps=[], ic=False, adj_ic=False) - self._P = P.copy() - self._P_T = P.T - - def forward_action(self, nl_deps, x, b, *, method="assign"): - if method == "assign": - var_set_values(b, self._P.dot(var_get_values(x))) - elif method == "add": - b.vector()[:] += self._P.dot(var_get_values(x)) - elif method == "sub": - b.vector()[:] -= self._P.dot(var_get_values(x)) - else: - raise ValueError(f"Invalid method: '{method:s}'") - - def adjoint_action(self, nl_deps, adj_x, b, b_index=0, *, method="assign"): - if b_index != 0: - raise ValueError("Unexpected b_index") - - if method == "assign": - var_set_values( - b, self._P_T.dot(var_get_values(adj_x))) - elif method == "add": - b.vector()[:] += self._P_T.dot(var_get_values(adj_x)) - elif method == "sub": - b.vector()[:] -= self._P_T.dot(var_get_values(adj_x)) - else: - raise ValueError(f"Invalid method: '{method:s}'") - - -class Interpolation(LinearEquation): - r"""Represents interpolation of the scalar-valued function `y` onto the - space for `x`. - - The forward residual :math:`\mathcal{F}` is defined so that :math:`\partial - \mathcal{F} / \partial x` is the identity. - - Internally this builds (or uses a supplied) interpolation matrix for the - local process *only*. This behaves correctly if the there are no edges - between owned and non-owned nodes in the degree of freedom graph associated - with the discrete function space for `y`. - - :arg x: A scalar-valued DOLFIN `Function` defining the forward solution. - :arg y: A scalar-valued DOLFIN `Function` to interpolate onto the space for - `x`. - :arg X_coords: A :class:`numpy.ndarray` defining the coordinates at which - to interpolate `y`. Shape is `(n, d)` where `n` is the number of - process local degrees of freedom for `x` and `d` is the geometric - dimension. Defaults to the process local degree of freedom locations - for `x`. Ignored if `P` is supplied. - :arg P: The interpolation matrix. A :class:`scipy.sparse.spmatrix`. - :arg tolerance: Maximum permitted distance (as returned by the DOLFIN - `BoundingBoxTree.compute_closest_entity` method) of an interpolation - point from a cell in the mesh for `y`. Ignored if `P` is supplied. - """ - - def __init__(self, x, y, *, x_coords=None, P=None, - tolerance=0.0): - check_space_type(x, "primal") - check_space_type(y, "primal") - - if not isinstance(x, backend_Function): - raise TypeError("Solution must be a Function") - if len(x.ufl_shape) > 0: - raise ValueError("Solution must be a scalar-valued Function") - if not isinstance(y, backend_Function): - raise TypeError("y must be a Function") - if len(y.ufl_shape) > 0: - raise ValueError("y must be a scalar-valued Function") - if (x_coords is not None) and (var_comm(x).size > 1): - raise TypeError("Cannot prescribe x_coords in parallel") - - if P is None: - y_space = y.function_space() - - if x_coords is None: - x_coords = function_coords(x) - - y_cells, y_distances = point_cells(x_coords, y_space.mesh()) - if (y_distances > tolerance).any(): - raise RuntimeError("Unable to locate one or more cells") - - y_colors = greedy_coloring(y_space) - P = interpolation_matrix(x_coords, y, y_cells, y_colors) - else: - P = P.copy() - - super().__init__( - x, MatrixActionRHS(LocalMatrix(P), y)) - - -class PointInterpolation(Equation): - r"""Represents interpolation of a scalar-valued function at given points. - - The forward residual :math:`\mathcal{F}` is defined so that :math:`\partial - \mathcal{F} / \partial x` is the identity. - - Internally this builds (or uses a supplied) interpolation matrix for the - local process *only*. This behaves correctly if the there are no edges - between owned and non-owned nodes in the degree of freedom graph associated - with the discrete function space for `y`. - - :arg X: A scalar variable, or a :class:`Sequence` of scalar variables, - defining the forward solution. - :arg y: A scalar-valued DOLFIN `Function` to interpolate. - :arg X_coords: A :class:`numpy.ndarray` defining the coordinates at which - to interpolate `y`. Shape is `(n, d)` where `n` is the number of - interpolation points and `d` is the geometric dimension. Ignored if `P` - is supplied. - :arg P: The interpolation matrix. A :class:`scipy.sparse.spmatrix`. - :arg tolerance: Maximum permitted distance (as returned by the DOLFIN - `BoundingBoxTree.compute_closest_entity` method) of an interpolation - point from a cell in the mesh for `y`. Ignored if `P` is supplied. - """ - - def __init__(self, X, y, X_coords=None, *, - P=None, tolerance=0.0): - X = packed(X) - for x in X: - check_space_type(x, "primal") - if not var_is_scalar(x): - raise ValueError("Solution must be a scalar variable, or a " - "Sequence of scalar variables") - check_space_type(y, "primal") - - if X_coords is None: - if P is None: - raise TypeError("X_coords required when P is not supplied") - else: - if len(X) != X_coords.shape[0]: - raise ValueError("Invalid number of variables") - if not isinstance(y, backend_Function): - raise TypeError("y must be a Function") - if len(y.ufl_shape) > 0: - raise ValueError("y must be a scalar-valued Function") - - if P is None: - y_space = y.function_space() - - y_cells = point_owners(X_coords, y_space, tolerance=tolerance) - y_colors = greedy_coloring(y_space) - P = interpolation_matrix(X_coords, y, y_cells, y_colors) - else: - P = P.copy() - - super().__init__(X, list(X) + [y], nl_deps=[], ic=False, adj_ic=False) - self._P = P - self._P_T = P.T - - def forward_solve(self, X, deps=None): - y = (self.dependencies() if deps is None else deps)[-1] - - check_space_type(y, "primal") - y_v = var_get_values(y) - x_v_local = np.full(len(X), np.nan, dtype=backend_ScalarType) - for i in range(len(X)): - x_v_local[i] = self._P.getrow(i).dot(y_v) - - comm = var_comm(y) - x_v = np.full(len(X), np.nan, dtype=x_v_local.dtype) - comm.Allreduce(x_v_local, x_v, op=MPI.SUM) - - for i, x in enumerate(X): - var_assign(x, x_v[i]) - - def adjoint_derivative_action(self, nl_deps, dep_index, adj_X): - if dep_index != len(self.X()): - raise ValueError("Unexpected dep_index") - - adj_x_v = np.full(len(adj_X), np.nan, dtype=backend_ScalarType) - for i, adj_x in enumerate(adj_X): - adj_x_v[i] = var_scalar_value(adj_x) - - F = var_new_conjugate_dual(self.dependencies()[-1]) - var_set_values(F, self._P_T.dot(adj_x_v)) - return (-1.0, F) - - def adjoint_jacobian_solve(self, adj_X, nl_deps, B): - return B - - def tangent_linear(self, tlm_map): - X = self.X() - y = self.dependencies()[-1] - - tlm_y = tlm_map[y] - if tlm_y is None: - return ZeroAssignment([tlm_map[x] for x in X]) - else: - return PointInterpolation([tlm_map[x] for x in X], tlm_y, - P=self._P)