-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathforms.py
166 lines (134 loc) · 4.83 KB
/
forms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from firedrake import *
from functools import reduce
def mass(p, q, mesh, nf=0):
V = FunctionSpace(mesh, 'CG', p)
P = FunctionSpace(mesh, 'CG', q)
u = TrialFunction(V)
v = TestFunction(V)
it = dot(v, u)
f = [Function(P).assign(1.0) for _ in range(nf)]
return reduce(inner, f + [it])*dx
def helmholtz(p, q, mesh, nf=0):
V = FunctionSpace(mesh, "CG", p)
P = FunctionSpace(mesh, "CG", q)
u = TrialFunction(V)
v = TestFunction(V)
f = [Function(P).assign(1.0) for _ in range(nf)]
it = dot(grad(v), grad(u)) + 1.0*v*u
return reduce(inner, f + [it])*dx
def poissonS(p, q, mesh, nf=0):
V = FunctionSpace(mesh, "CG", p)
P = FunctionSpace(mesh, "CG", q)
u = TrialFunction(V)
v = TestFunction(V)
f = [Function(P).assign(1.0) for _ in range(nf)]
it = dot(grad(v), grad(u))
return reduce(inner, f + [it])*dx
def elasticity(p, q, mesh, nf=0):
V = VectorFunctionSpace(mesh, 'CG', p)
P = FunctionSpace(mesh, 'CG', q)
u = TrialFunction(V)
v = TestFunction(V)
eps = lambda v: grad(v) + transpose(grad(v))
it = 0.25*inner(eps(v), eps(u))
f = [Function(P).assign(1.0) for _ in range(nf)]
return reduce(inner, f + [it])*dx
def hyperelasticity(p, q, mesh, nf=0):
V = VectorFunctionSpace(mesh, 'CG', p)
P = VectorFunctionSpace(mesh, 'CG', q)
v = TestFunction(V)
du = TrialFunction(V) # Incremental displacement
u = Function(V) # Displacement from previous iteration
B = Function(V) # Body force per unit mass
# Kinematics
I = Identity(mesh.topological_dimension())
F = I + grad(u) # Deformation gradient
C = F.T*F # Right Cauchy-Green tensor
E = (C - I)/2 # Euler-Lagrange strain tensor
E = variable(E)
# Material constants
mu = Constant(1.0) # Lame's constants
lmbda = Constant(0.001)
# Strain energy function (material model)
psi = lmbda/2*(tr(E)**2) + mu*tr(E*E)
S = diff(psi, E) # Second Piola-Kirchhoff stress tensor
PK = F*S # First Piola-Kirchoff stress tensor
# Variational problem
it = inner(PK, grad(v)) - inner(B, v)
f = [Function(P).assign(1.0) for _ in range(nf)]
return derivative(reduce(inner, list(map(div, f)) + [it])*dx, u, du)
def laplacian(p, q, mesh, nf=0):
V = VectorFunctionSpace(mesh, 'CG', p)
P = VectorFunctionSpace(mesh, 'CG', q)
u = TrialFunction(V)
v = TestFunction(V)
it = inner(grad(v), grad(u))
f = [div(Function(P).assign(1.0)) for _ in range(nf)]
return reduce(inner, f + [it])*dx
def mixed_poisson(p, q, mesh, nf=0):
BDM = FunctionSpace(mesh, "BDM", p)
DG = FunctionSpace(mesh, "DG", p - 1)
P = FunctionSpace(mesh, 'CG', q)
W = BDM * DG
sigma, u = TrialFunctions(W)
tau, v = TestFunctions(W)
it = dot(sigma, tau) + div(tau)*u + div(sigma)*v
f = [Function(P).assign(1.0) for _ in range(nf)]
return reduce(inner, f + [it])*dx
def holzapfel(p, q, mesh, nf=0):
assert nf == 0
lamda = Constant(1000.)
a = Constant(0.5)
b = Constant(15.0)
a_s = Constant(21.0)
b_s = Constant(15.0)
a_f = Constant(21.0)
b_f = Constant(11.0)
a_fs = Constant(20.0)
b_fs = Constant(10.0)
# For more fun, make these general vector fields rather than
# constants:
e_s = Constant([0.0, 1.0, 0.0])
e_f = Constant([1.0, 0.0, 0.0])
# Define the isochoric energy contribution
def isochoric(F):
C = F.T * F
I_1 = tr(C)
I4_f = dot(e_f, C * e_f)
I4_s = dot(e_s, C * e_s)
I8_fs = dot(e_f, C * e_s)
def cutoff(x):
return 1.0 / (1.0 + exp(-(x - 1.0) * 30.0))
def scaled_exp(a0, a1, argument):
return a0 / (2.0 * a1) * (exp(b * argument) - 1)
E_1 = scaled_exp(a, b, I_1 - 3.)
E_f = cutoff(I4_f) * scaled_exp(a_f, b_f, (I4_f - 1.) ** 2)
E_s = cutoff(I4_s) * scaled_exp(a_s, b_s, (I4_s - 1.) ** 2)
E_3 = scaled_exp(a_fs, b_fs, I8_fs ** 2)
E = E_1 + E_f + E_s + E_3
return E
# Define mesh and function space
# mesh = UnitCubeMesh(16, 16, 16)
V = VectorFunctionSpace(mesh, "CG", p)
P = VectorFunctionSpace(mesh, 'CG', q)
u = Function(V)
v = TestFunction(V)
# Misc elasticity related tensors and other quantities
I = Identity(mesh.ufl_cell().topological_dimension())
F = grad(u) + I
F = variable(F)
J = det(F)
Fbar = J ** (-1.0 / 3.0) * F
# Define energy
E_volumetric = lamda * 0.5 * ln(J) ** 2
psi = isochoric(Fbar) + E_volumetric
# Find first Piola-Kircchoff tensor
P = diff(psi, F)
# Define the variational formulation
F = inner(P, grad(v)) * dx
# Take the derivative
a = derivative(F, u)
return a
#
# f = [Function(P).assign(1.0) for _ in range(nf)]
# return derivative(reduce(inner, iter + list(map(div, f)))*dx, u)