-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
214 lines (184 loc) · 9.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import os
import sys
import argparse
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.autograd import Variable
from utils import path_check, args_print_save, printer
from models import R2Plus1D, Resnet
from UCF101 import UCF101, CategoriesSampler
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--frames-path", type=str, default="../Data/UCF101/UCF101_frames/")
parser.add_argument("--labels-path", type=str, default="./UCF101_few_shot_labels/")
parser.add_argument("--save-path", type=str, default="./save/train1/")
parser.add_argument("--tensorboard-path", type=str, default="./tensorboard/train1")
parser.add_argument("--frame-size", type=int, default=112)
parser.add_argument("--num-epochs", type=int, default=30)
parser.add_argument("--train-iter-size", type=int, default=100)
parser.add_argument("--val-iter-size", type=int, default=200)
parser.add_argument("--metric", type=str, default="cosine")
# ===========================UCF101.py options==================================
# pad options
parser.add_argument("--random-pad-sample", action="store_true")
parser.add_argument("--pad-option", type=str, default="default")
# frame options
parser.add_argument("--uniform-frame-sample", action="store_true")
parser.add_argument("--random-start-position", action="store_true")
parser.add_argument("--max-interval", type=int, default=7)
parser.add_argument("--random-interval", action="store_true")
# ===============================================================================
parser.add_argument("--sequence-length", type=int, default=35)
parser.add_argument("--model", type=str, default="resnet")
parser.add_argument("--num-layers", type=int, default=1)
parser.add_argument("--hidden-size", type=int, default=512)
parser.add_argument("--bidirectional", action="store_true")
parser.add_argument("--learning-rate", type=float, default=1e-4)
parser.add_argument("--scheduler-step-size", type=int, default=10)
parser.add_argument("--scheduler-gamma", type=float, default=0.9)
parser.add_argument("--way", type=int, default=5)
parser.add_argument("--shot", type=int, default=1)
parser.add_argument("--query", type=int, default=5)
args = parser.parse_args()
# check options
assert args.model in ["resnet", "r2plus1d"], "'{}' model is invalid.".format(args.model)
assert args.metric in ["cosine", "euclidean", "relation"], "'{}' metric is invalid.".format(args.metric)
# path to save
path_check(args.save_path)
# path to tensorboard
writer = SummaryWriter(args.tensorboard_path)
# print args and save it in the save_path
args_print_save(args)
train_dataset = UCF101(
model=args.model,
frames_path=args.frames_path,
labels_path=args.labels_path,
frame_size=args.frame_size,
sequence_length=args.sequence_length,
setname='train',
# pad options
random_pad_sample=args.random_pad_sample,
pad_option=args.pad_option,
# frame sample options
uniform_frame_sample=args.uniform_frame_sample,
random_start_position=args.random_start_position,
max_interval=args.max_interval,
random_interval=args.random_interval,
)
# do not use the autoaugment on the validation or test dataset
val_dataset = UCF101(
model=args.model,
frames_path=args.frames_path,
labels_path=args.labels_path,
frame_size=args.frame_size,
sequence_length=args.sequence_length,
setname='test',
# pad options
random_pad_sample=False,
pad_option='default',
# frame sample options
uniform_frame_sample=True,
random_start_position=False,
max_interval=7,
random_interval=False,
)
print("[train] number of videos / classes: {} / {}, [val] number of videos / classes: {} / {}".format(len(train_dataset), train_dataset.num_classes, len(val_dataset), val_dataset.num_classes))
print("total training episodes: {}".format(args.num_epochs * args.train_iter_size))
train_sampler = CategoriesSampler(train_dataset.classes, args.train_iter_size, args.way, args.shot, args.query)
val_sampler = CategoriesSampler(val_dataset.classes, args.val_iter_size, args.way, args.shot, args.query)
# in windows has some issue when try to use DataLoader in pytorch, i don't know why...
train_loader = DataLoader(dataset=train_dataset, batch_sampler=train_sampler, num_workers=0 if os.name == 'nt' else 4, pin_memory=True)
val_loader = DataLoader(dataset=val_dataset, batch_sampler=val_sampler, num_workers=0 if os.name == 'nt' else 4, pin_memory=True)
# select a model, i prepaired two models for simple testing
if args.model == "resnet":
model = Resnet(
way=args.way,
shot=args.shot,
query=args.query,
num_layers=args.num_layers,
hidden_size=args.hidden_size,
bidirectional=args.bidirectional,
)
if args.model == "r2plus1d":
model = R2Plus1D(
way=args.way,
shot=args.shot,
query=args.query,
metric=args.metric,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=5e-4)
# optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.scheduler_step_size, gamma=args.scheduler_gamma)
best = 0 # top1 best accuracy
total_loss = 0
total_acc = 0
n_iter_train = 0
n_iter_val = 0
print("train... {}-way {}-shot {}-query".format(args.way, args.shot, args.query))
for e in range(1, args.num_epochs+1):
train_acc = []
train_loss = []
model.train()
for i, (datas, _) in enumerate(train_loader):
datas = datas.to(device)
pivot = args.way * args.shot
shot, query = datas[:pivot], datas[pivot:]
labels = torch.arange(args.way).repeat(args.query).to(device)
pred = model(shot, query)
# calculate loss
# onehot_labels = Variable(torch.zeros(args.way*args.query, args.way).scatter_(1, torch.arange(args.way).repeat(args.query).view(-1, 1), 1)).to(device)
loss = F.cross_entropy(pred, labels)
# loss = F.mse_loss(pred, onehot_labels)
train_loss.append(loss.item())
total_loss = sum(train_loss)/len(train_loss)
# update weight
optimizer.zero_grad()
loss.backward()
optimizer.step()
# calculate accuracy
acc = (pred.argmax(1) == labels).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor).mean().item()
train_acc.append(acc)
total_acc = sum(train_acc) / len(train_acc)
# print result
printer("train", e, args.num_epochs, i+1, len(train_loader), loss.item(), total_loss, acc * 100, total_acc * 100)
# tensorboard
writer.add_scalar("Loss/train", loss.item(), n_iter_train)
writer.add_scalar("Accuracy/train", acc, n_iter_train)
n_iter_train += 1
print("")
val_acc = []
val_loss = []
model.eval()
with torch.no_grad():
for i, (datas, _) in enumerate(val_loader):
datas = datas.to(device)
pivot = args.way * args.shot
shot, query = datas[:pivot], datas[pivot:]
labels = torch.arange(args.way).repeat(args.query).to(device)
pred = model(shot, query)
# calculate loss
# onehot_labels = Variable(torch.zeros(args.way*args.query, args.way).scatter_(1, torch.arange(args.way).repeat(args.query).view(-1, 1), 1)).to(device)
loss = F.cross_entropy(pred, labels).item()
# loss = F.mse_loss(pred, onehot_labels).item()
val_loss.append(loss)
total_loss = sum(val_loss)/len(val_loss)
# calculate accuracy
acc = (pred.argmax(1) == labels).type(torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor).mean().item()
val_acc.append(acc)
total_acc = sum(val_acc)/len(val_acc)
# print result
printer("val", e, args.num_epochs, i+1, len(val_loader), loss, total_loss, acc * 100, total_acc * 100)
# tensorboard
writer.add_scalar("Loss/val", loss, n_iter_val)
writer.add_scalar("Accuracy/val", acc, n_iter_val)
n_iter_val += 1
if total_acc > best:
best = total_acc
torch.save(model.state_dict(), os.path.join(args.save_path, "best.pth"))
torch.save(model.state_dict(), os.path.join(args.save_path, "last.pth"))
print("Best: {:.2f}%".format(best * 100))
lr_scheduler.step()