-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.aux
265 lines (265 loc) · 24.1 KB
/
main.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{1989gadv.book..151B}
\citation{2008MNRAS.389.1179L}
\citation{2014PASA...31...35D}
\citation{2011ApJ...737...32E}
\citation{1926ApJ....64..321H}
\citation{1961hag..book.....S,1991rc3..book.....D}
\citation{1982MNRAS.201.1021E}
\citation{2011EAS....51...19E}
\citation{2013A&A...560A..59C}
\citation{2014IAUS..298..221D}
\citation{2018MNRAS.476.1561D}
\citation{2004ARA&A..42..603K}
\citation{2010ApJ...716..942F}
\citation{2019ApJ...871..194Y}
\citation{2017MNRAS.472.2263H}
\citation{2019MNRAS.487.1808M}
\citation{2005MNRAS.359.1065S}
\select@language{british}
\@writefile{toc}{\select@language{british}}
\@writefile{lof}{\select@language{british}}
\@writefile{lot}{\select@language{british}}
\select@language{british}
\@writefile{toc}{\select@language{british}}
\@writefile{lof}{\select@language{british}}
\@writefile{lot}{\select@language{british}}
\newlabel{firstpage}{{}{1}{}{Doc-Start}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}}
\citation{2010MNRAS.403..625D,2017ApJ...834....7S}
\citation{1976ApJ...209...53S,2008A&A...489..115R}
\citation{2006A&A...453...39R,2009MNRAS.394...67A,2009MNRAS.400.1706A}
\citation{1964ApJ...140..646L}
\citation{1966ApJ...146..810J}
\citation{1964ApJ...140..646L}
\citation{1964ApJ...140..646L}
\citation{Toomre1981}
\citation{1987gady.book.....B}
\citation{2013ApJ...763...46B}
\citation{2014PASA...31...35D}
\citation{1976ApJ...205..363M}
\citation{1965MNRAS.130..125G}
\citation{2019arXiv190910291P}
\citation{2020arXiv200610450L}
\citation{Willett2013:1308.3496v2}
\citation{2008A&A...489..115R}
\citation{2012MNRAS.426..167G}
\citation{2006A&A...453...39R,2009MNRAS.394...67A,2009MNRAS.400.1706A}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Examples of the different types of spiral galaxy present in the sky. The left column shows the grand design spiral NGC 5248. the middle shows the many-armed spiral NGC-3184 and the right shows the flocculent spiral NGC 2841. Images were taken with the Sloan Digital Sky Survey Telescope.}}{2}{figure.1}}
\newlabel{fig:spiral-galaxy-types}{{1}{2}{Examples of the different types of spiral galaxy present in the sky. The left column shows the grand design spiral NGC 5248. the middle shows the many-armed spiral NGC-3184 and the right shows the flocculent spiral NGC 2841. Images were taken with the Sloan Digital Sky Survey Telescope}{figure.1}{}}
\citation{1975A&A....44..363Y}
\citation{2013MNRAS.436.1074S}
\citation{2019MNRAS.487.1808M}
\citation{2008ApJ...678L..93S}
\citation{2017MNRAS.471.2187D}
\citation{2019MS&E..571a2118A}
\citation{2019arXiv190910291P}
\citation{2015A&A...582A..86H}
\citation{2012ApJS..199...33D}
\citation{2014ApJ...790...87D}
\citation{2017MNRAS.472.2263H}
\citation{2020MNRAS.493.3854H}
\citation{2010AJ....139.2097P}
\citation{2020arXiv200610450L}
\citation{Gao2017:1709.00746v1}
\citation{2020arXiv200610450L}
\citation{2012ApJS..199...33D,2013MNRAS.436.1074S,2014ApJ...790...87D}
\citation{2014ApJ...790...87D}
\citation{2017MNRAS.472.2263H}
\citation{2014ApJ...790...87D}
\citation{2019arXiv190804246D}
\citation{2012ApJS..199...33D}
\citation{2018MNRAS.474.2594M}
\citation{ConsidereAthanassoula1988}
\citation{2012ApJS..199...33D}
\citation{2020MNRAS.493.3854H}
\citation{2012ApJS..199...33D}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Illustration of the definition of pitch angle. It is given as $\phi = \qopname \relax o{tan}^{-1}\left (\frac {\mathrm {d}r}{\mathrm {d}\theta }\ /\ r\right )$, or the angle between the spiral (red) and the tangent to a circle centred on the galaxy (blue).}}{3}{figure.2}}
\newlabel{fig:pitch-angle-example}{{2}{3}{Illustration of the definition of pitch angle. It is given as $\phi = \tan ^{-1}\left (\frac {\mathrm {d}r}{\mathrm {d}\theta }\ /\ r\right )$, or the angle between the spiral (red) and the tangent to a circle centred on the galaxy (blue)}{figure.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Method}{3}{section.2}}
\newlabel{section:method}{{2}{3}{Method}{section.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Measuring galaxy pitch angle}{3}{subsection.2.1}}
\newlabel{eq:log-spiral}{{1}{3}{Measuring galaxy pitch angle}{equation.1}{}}
\citation{2020arXiv200610450L}
\citation{2017MNRAS.472.2263H}
\citation{2011AJ....142...31B}
\citation{Willett2013:1308.3496v2}
\citation{2020arXiv200610450L}
\citation{2017MNRAS.472.2263H}
\citation{2020arXiv200610450L}
\citation{2017MNRAS.472.2263H}
\citation{2020arXiv200610450L}
\citation{2017MNRAS.472.2263H}
\citation{2020arXiv200610450L}
\citation{2020arXiv200610450L}
\citation{2020arXiv200610450L}
\citation{2020arXiv200610450L}
\citation{2020arXiv200610450L}
\citation{2020arXiv200610450L}
\citation{1981AJ.....86.1847K}
\citation{2009MNRAS.397..164R}
\citation{1981AJ.....86.1847K}
\citation{2014ApJ...790...87D}
\citation{Vallee2015}
\citation{HonigRead2015}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}The Galaxy Sample}{4}{subsection.2.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Bayesian modelling of spiral arms in \textit {Galaxy Builder}}{4}{subsection.2.3}}
\newlabel{section:bhsm-model}{{2.3}{4}{Bayesian modelling of spiral arms in \textit {Galaxy Builder}}{subsection.2.3}{}}
\citation{2020arXiv200610450L}
\citation{2011arXiv1111.4246H}
\citation{pymc3_paper}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces A plot of redshift against stellar mass for the \textit {stellar mass-complete sample} from \citet {2017MNRAS.472.2263H}; the subset we use for analysis in Galaxy Builder are shown in red. At right we show a histogram of the stellar masses. This Figure is identical to Figure 4 from \citet {2020arXiv200610450L} who use the same sample.}}{5}{figure.3}}
\newlabel{fig:stellarmass}{{3}{5}{A plot of redshift against stellar mass for the \textit {stellar mass-complete sample} from \citet {2017MNRAS.472.2263H}; the subset we use for analysis in Galaxy Builder are shown in red. At right we show a histogram of the stellar masses. This Figure is identical to Figure 4 from \citet {2020arXiv200610450L} who use the same sample}{figure.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Results}{5}{section.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Constraints on Galaxy Pitch angle}{5}{subsection.3.1}}
\newlabel{section:constraints-on-galaxy-phi}{{3.1}{5}{Constraints on Galaxy Pitch angle}{subsection.3.1}{}}
\citation{1981AJ.....86.1847K}
\citation{2014ApJ...790...87D}
\citation{10.2307/2286009}
\citation{scipy-paper}
\citation{doi:10.1080/01621459.1987.10478517}
\citation{2005ARA&A..43..581S}
\citation{2009MNRAS.393.1531G}
\citation{2013seg..book..155B}
\citation{2005ARA&A..43..581S}
\citation{2019MNRAS.487.1808M}
\citation{2019ApJ...873...85D}
\citation{2019MNRAS.487.1808M}
\citation{2019MNRAS.487.1808M}
\citation{2009MNRAS.400.1706A}
\citation{2009MNRAS.400.1706A}
\citation{Willett2013:1308.3496v2}
\citation{2012MNRAS.423.1485S,2012MNRAS.424.2180M,2018MNRAS.473.4731K}
\citation{2012MNRAS.424.2180M}
\citation{2012MNRAS.423.1485S}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Dependence of pitch angle on Galaxy Morphology}{6}{subsection.3.2}}
\newlabel{section:morphology-comparison}{{3.2}{6}{Dependence of pitch angle on Galaxy Morphology}{subsection.3.2}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.1}Pitch angle vs. Bulge size}{6}{subsubsection.3.2.1}}
\newlabel{section:morphology-comparison-bulge}{{3.2.1}{6}{Pitch angle vs. Bulge size}{subsubsection.3.2.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.2.2}Pitch angle vs. Bar Strength}{6}{subsubsection.3.2.2}}
\newlabel{section:morphology-comparison-bar}{{3.2.2}{6}{Pitch angle vs. Bar Strength}{subsubsection.3.2.2}{}}
\citation{2019arXiv190910291P}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Examples of spiral profiles fit using the hierarchical model described in Section \ref {section:bhsm-model}. Deprojected points from \textit {Galaxy Builder} clustered, cleaned spiral arms are shown in black; fit logarithmic spiral arms are shown in red, with the width of the line corresponding to the $2\sigma $ interval on predicted values of $\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle r_\mathrm {arm}$}\mathaccent "0365{r_\mathrm {arm}}$. The two one-armed spirals in the top left panels are instances where the spiral clustering algorithm failed to identify all spiral arms present in the galaxy.}}{7}{figure.4}}
\newlabel{fig:example-spiral-fits}{{4}{7}{Examples of spiral profiles fit using the hierarchical model described in Section \ref {section:bhsm-model}. Deprojected points from \textit {Galaxy Builder} clustered, cleaned spiral arms are shown in black; fit logarithmic spiral arms are shown in red, with the width of the line corresponding to the $2\sigma $ interval on predicted values of $\widetilde {r_\mathrm {arm}}$. The two one-armed spirals in the top left panels are instances where the spiral clustering algorithm failed to identify all spiral arms present in the galaxy}{figure.4}{}}
\citation{2019arXiv190910291P}
\citation{2019arXiv190910291P}
\citation{2019ApJ...871..194Y}
\citation{2019arXiv190910291P}
\citation{2019arXiv190910291P}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Scatter plot showing how arm pitch angle compares to galaxy pitch angle for galaxies with different pitch angles and number of arms. The top panel shows a Gaussian KDE for $E[\phi _\mathrm {gal}]$, and the right panel shows a Gaussian KDE for $E[\phi _\mathrm {arm} - \phi _\mathrm {gal}]$. The galaxy pitch angle is consistent with the mean of its arms, with large scatter and a slight bias against values near the lower bound of $0$ due to the lower limit applied.}}{8}{figure.5}}
\newlabel{fig:arm-pa-spread}{{5}{8}{Scatter plot showing how arm pitch angle compares to galaxy pitch angle for galaxies with different pitch angles and number of arms. The top panel shows a Gaussian KDE for $E[\phi _\mathrm {gal}]$, and the right panel shows a Gaussian KDE for $E[\phi _\mathrm {arm} - \phi _\mathrm {gal}]$. The galaxy pitch angle is consistent with the mean of its arms, with large scatter and a slight bias against values near the lower bound of $0$ due to the lower limit applied}{figure.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces The stellar mass distribution of the sample and the galaxy average pitch angle distribution shown as a 2D histogram (centre) and also projected along each axis. }}{8}{figure.6}}
\newlabel{fig:stellar-mass-phigal}{{6}{8}{The stellar mass distribution of the sample and the galaxy average pitch angle distribution shown as a 2D histogram (centre) and also projected along each axis}{figure.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Spiral Winding}{8}{subsection.3.3}}
\newlabel{section:spiral_winding}{{3.3}{8}{Spiral Winding}{subsection.3.3}{}}
\newlabel{eq:winding}{{12}{8}{Spiral Winding}{equation.12}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.1}Galaxy Pitch angle}{8}{subsubsection.3.3.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Density plot showing bulge strength ($B_\mathrm {avg}$; left, orange) and bar strength ($p_\mathrm {bar}$; right, green) against galaxy pitch angle ($\phi _\mathrm {gal}$). Split points for the marginalized Anderson-Darling tests are labelled. There is no statistically significant relationship for either bulge or bar strength.}}{9}{figure.7}}
\newlabel{fig:bulge-bar-pa-hist}{{7}{9}{Density plot showing bulge strength ($B_\mathrm {avg}$; left, orange) and bar strength ($p_\mathrm {bar}$; right, green) against galaxy pitch angle ($\phi _\mathrm {gal}$). Split points for the marginalized Anderson-Darling tests are labelled. There is no statistically significant relationship for either bulge or bar strength}{figure.7}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces The results of marginalized two-sample Anderson-Darling tests examining whether pitch angles ($\phi _\mathrm {gal}$ in blue and $\phi _\mathrm {gal}$ in orange) for galaxies with $B_\mathrm {avg} < 0.28$ and $B_\mathrm {avg} \ge 0.28$ are drawn from the same distribution (top panel), and the results of marginalized three-sample Anderson-Darling tests for galaxies with no bar ($p_\mathrm {bar} < 0.2$), a weak bar ($0.2 \le p_\mathrm {bar} \le 0.5$) and a strong bar ($p_\mathrm {bar} > 0.5$) (bottom panel). Confidence intervals are shown, with moving rightwards indicating more confidence in rejecting the null hypothesis that the compared values were drawn from the same parent distribution. We cannot reject the null hypothesis at the 1\% level for any of the tests conducted, meaning there is no evidence in this sample that bulge size or bar strength impacts pitch angle.}}{9}{figure.8}}
\newlabel{fig:ad-morphology-test}{{8}{9}{The results of marginalized two-sample Anderson-Darling tests examining whether pitch angles ($\phi _\mathrm {gal}$ in blue and $\phi _\mathrm {gal}$ in orange) for galaxies with $B_\mathrm {avg} < 0.28$ and $B_\mathrm {avg} \ge 0.28$ are drawn from the same distribution (top panel), and the results of marginalized three-sample Anderson-Darling tests for galaxies with no bar ($p_\mathrm {bar} < 0.2$), a weak bar ($0.2 \le p_\mathrm {bar} \le 0.5$) and a strong bar ($p_\mathrm {bar} > 0.5$) (bottom panel). Confidence intervals are shown, with moving rightwards indicating more confidence in rejecting the null hypothesis that the compared values were drawn from the same parent distribution. We cannot reject the null hypothesis at the 1\% level for any of the tests conducted, meaning there is no evidence in this sample that bulge size or bar strength impacts pitch angle}{figure.8}{}}
\citation{2019arXiv190910291P}
\citation{2009MNRAS.400.1706A}
\citation{2019arXiv190910291P}
\citation{1965MNRAS.130..125G}
\citation{2013MNRAS.436.1074S}
\citation{2019ApJ...871..194Y}
\citation{2019arXiv190910291P}
\citation{1981AJ.....86.1847K}
\citation{1981AJ.....86.1847K}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {3.3.2}Arm Pitch angle}{10}{subsubsection.3.3.2}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Summary and Conclusions}{10}{section.4}}
\newlabel{section:summary}{{4}{10}{Summary and Conclusions}{section.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces The distributions of pitch angles (orange and blue) relative to one uniform in $\qopname \relax o{cot}\phi $ (black). Histograms have been normalised by the area between the limits such that they are comparable. The histogram was recalculated with identical bins for each posterior sample of $\phi _\mathrm {gal}$ and $\phi _\mathrm {arm}$, we plot the mean value of each bin, with the sample standard deviation shown as error bars. It is evident that the distributions are very similar between the chosen limits.}}{11}{figure.9}}
\newlabel{fig:pa-cot-distributions}{{9}{11}{The distributions of pitch angles (orange and blue) relative to one uniform in $\cot \phi $ (black). Histograms have been normalised by the area between the limits such that they are comparable. The histogram was recalculated with identical bins for each posterior sample of $\phi _\mathrm {gal}$ and $\phi _\mathrm {arm}$, we plot the mean value of each bin, with the sample standard deviation shown as error bars. It is evident that the distributions are very similar between the chosen limits}{figure.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces The results of a marginalized Anderson-Darling test for uniformity in $\qopname \relax o{cot}$ for $\phi _\mathrm {gal}$ (blue) and $\phi _\mathrm {arm}$ (orange), with values corresponding to various confidence intervals shown. Moving rightwards on the x-axis implies greater confidence in rejecting the null hypothesis that the sample was drawn from a distribution uniform in $\qopname \relax o{cot}$ between $15^\circ < \phi < 50.0^\circ $. In this instance, we would not be able to reject the null hypothesis at the 1\% level for either $\phi _\mathrm {gal}$ or $\phi _\mathrm {arm}$, meaning our sample is consistent with a cot uniform distribution. The larger error in $\phi _\mathrm {gal}$ means that this result is more significant for $\phi _\mathrm {arm}$, which is also physically motivated, as arms can wind independently.}}{11}{figure.10}}
\newlabel{fig:ad-cot-test}{{10}{11}{The results of a marginalized Anderson-Darling test for uniformity in $\cot $ for $\phi _\mathrm {gal}$ (blue) and $\phi _\mathrm {arm}$ (orange), with values corresponding to various confidence intervals shown. Moving rightwards on the x-axis implies greater confidence in rejecting the null hypothesis that the sample was drawn from a distribution uniform in $\cot $ between $15^\circ < \phi < 50.0^\circ $. In this instance, we would not be able to reject the null hypothesis at the 1\% level for either $\phi _\mathrm {gal}$ or $\phi _\mathrm {arm}$, meaning our sample is consistent with a cot uniform distribution. The larger error in $\phi _\mathrm {gal}$ means that this result is more significant for $\phi _\mathrm {arm}$, which is also physically motivated, as arms can wind independently}{figure.10}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5}Acknowledgements}{11}{section.5}}
\bibstyle{mnras}
\bibdata{bibliography}
\bibcite{2019MS&E..571a2118A}{{1}{2019}{{{Al-Baidhany} et~al.}}{{{Al-Baidhany}, {Chiad}, {Jabbar}, {Hussein}, {Hussain} \& {Habubi}}}}
\bibcite{2009MNRAS.394...67A}{{2}{2009a}{{{Athanassoula} et~al.}}{{{Athanassoula}, {Romero-G{\'o}mez} \& {Masdemont}}}}
\bibcite{2009MNRAS.400.1706A}{{3}{2009b}{{{Athanassoula} et~al.}}{{{Athanassoula}, {Romero-G{\'o}mez}, {Bosma} \& {Masdemont}}}}
\bibcite{2013ApJ...763...46B}{{4}{2013}{{{Baba} et~al.}}{{{Baba}, {Saitoh} \& {Wada}}}}
\bibcite{1987gady.book.....B}{{5}{1987}{{{Binney} \& {Tremaine}}}{{{Binney} \& {Tremaine}}}}
\bibcite{2011AJ....142...31B}{{6}{2011}{{{Blanton} et~al.}}{{{Blanton}, {Kazin}, {Muna}, {Weaver} \& {Price-Whelan}}}}
\bibcite{1989gadv.book..151B}{{7}{1989}{{{Buta}}}{{{Buta}}}}
\bibcite{2013seg..book..155B}{{8}{2013}{{{Buta}}}{{{Buta}}}}
\bibcite{2013A&A...560A..59C}{{9}{2013}{{{Cedr{\'e}s} et~al.}}{{{Cedr{\'e}s}, {Cepa}, {Bongiovanni}, {Casta{\~n}eda}, {S{\'a}nchez-Portal} \& {Tomita}}}}
\bibcite{ConsidereAthanassoula1988}{{10}{1988}{{{Considere} \& {Athanassoula}}}{{{Considere} \& {Athanassoula}}}}
\bibcite{2018MNRAS.476.1561D}{{11}{2018}{{{Daniel} \& {Wyse}}}{{{Daniel} \& {Wyse}}}}
\bibcite{2014ApJ...790...87D}{{12}{2014}{{{Davis} \& {Hayes}}}{{{Davis} \& {Hayes}}}}
\bibcite{2012ApJS..199...33D}{{13}{2012}{{{Davis} et~al.}}{{{Davis}, {Berrier}, {Shields}, {Kennefick}, {Kennefick}, {Seigar}, {Lacy} \& {Puerari}}}}
\bibcite{2017MNRAS.471.2187D}{{14}{2017}{{{Davis} et~al.}}{{{Davis}, {Graham} \& {Seigar}}}}
\bibcite{2019ApJ...873...85D}{{15}{2019}{{{Davis} et~al.}}{{{Davis}, {Graham} \& {Cameron}}}}
\bibcite{2019arXiv190804246D}{{16}{2019}{{{D{\'\i }az-Garc{\'\i }a} et~al.}}{{{D{\'\i }az-Garc{\'\i }a}, {Salo}, {Knapen} \& {Herrera-Endoqui}}}}
\bibcite{2014IAUS..298..221D}{{17}{2014}{{{Dobbs}}}{{{Dobbs}}}}
\bibcite{2014PASA...31...35D}{{18}{2014}{{{Dobbs} \& {Baba}}}{{{Dobbs} \& {Baba}}}}
\bibcite{2010MNRAS.403..625D}{{19}{2010}{{{Dobbs} et~al.}}{{{Dobbs}, {Theis}, {Pringle} \& {Bate}}}}
\bibcite{2011EAS....51...19E}{{20}{2011}{{{Elmegreen}}}{{{Elmegreen}}}}
\bibcite{1982MNRAS.201.1021E}{{21}{1982}{{{Elmegreen} \& {Elmegreen}}}{{{Elmegreen} \& {Elmegreen}}}}
\bibcite{2011ApJ...737...32E}{{22}{2011}{{{Elmegreen} et~al.}}{{{Elmegreen} et~al.,}}}
\bibcite{2010ApJ...716..942F}{{23}{2010}{{{Fisher} \& {Drory}}}{{{Fisher} \& {Drory}}}}
\bibcite{2009MNRAS.393.1531G}{{24}{2009}{{{Gadotti}}}{{{Gadotti}}}}
\bibcite{Gao2017:1709.00746v1}{{25}{2017}{{{Gao} \& {Ho}}}{{{Gao} \& {Ho}}}}
\bibcite{1965MNRAS.130..125G}{{26}{1965}{{{Goldreich} \& {Lynden-Bell}}}{{{Goldreich} \& {Lynden-Bell}}}}
\bibcite{2012MNRAS.426..167G}{{27}{2012}{{{Grand} et~al.}}{{{Grand}, {Kawata} \& {Cropper}}}}
\bibcite{2017MNRAS.472.2263H}{{28}{2017}{{{Hart} et~al.}}{{{Hart} et~al.,}}}
\bibcite{2015A&A...582A..86H}{{29}{2015}{{{Herrera-Endoqui} et~al.}}{{{Herrera-Endoqui}, {D{\'\i }az-Garc{\'\i }a}, {Laurikainen} \& {Salo}}}}
\bibcite{2020MNRAS.493.3854H}{{30}{2020}{{{Hewitt} \& {Treuthardt}}}{{{Hewitt} \& {Treuthardt}}}}
\bibcite{2011arXiv1111.4246H}{{31}{2011}{{{Hoffman} \& {Gelman}}}{{{Hoffman} \& {Gelman}}}}
\bibcite{HonigRead2015}{{32}{2015}{{{Honig} \& {Reid}}}{{{Honig} \& {Reid}}}}
\bibcite{1926ApJ....64..321H}{{33}{1926}{{{Hubble}}}{{{Hubble}}}}
\bibcite{scipy-paper}{{34}{2001}{{Jones et~al.}}{{Jones, Oliphant, Peterson et~al.}}}
\bibcite{1966ApJ...146..810J}{{35}{1966}{{{Julian} \& {Toomre}}}{{{Julian} \& {Toomre}}}}
\bibcite{1981AJ.....86.1847K}{{36}{1981}{{{Kennicutt}}}{{{Kennicutt}}}}
\bibcite{2004ARA&A..42..603K}{{37}{2004}{{{Kormendy} \& {Kennicutt}}}{{{Kormendy} \& {Kennicutt}}}}
\bibcite{2018MNRAS.473.4731K}{{38}{2018}{{{Kruk} et~al.}}{{{Kruk} et~al.,}}}
\bibcite{1964ApJ...140..646L}{{39}{1964}{{{Lin} \& {Shu}}}{{{Lin} \& {Shu}}}}
\bibcite{2020arXiv200610450L}{{40}{2020}{{{Lingard} et~al.}}{{{Lingard} et~al.,}}}
\bibcite{2008MNRAS.389.1179L}{{41}{2008}{{{Lintott} et~al.}}{{{Lintott} et~al.,}}}
\bibcite{1976ApJ...205..363M}{{42}{1976}{{{Mark}}}{{{Mark}}}}
\bibcite{2012MNRAS.424.2180M}{{43}{2012}{{{Masters} et~al.}}{{{Masters} et~al.,}}}
\bibcite{2019MNRAS.487.1808M}{{44}{2019}{{{Masters} et~al.}}{{{Masters} et~al.,}}}
\bibcite{2018MNRAS.474.2594M}{{45}{2018}{{{Mutlu-Pakdil} et~al.}}{{{Mutlu-Pakdil}, {Seigar}, {Hewitt}, {Treuthardt}, {Berrier} \& {Koval}}}}
\bibcite{2010AJ....139.2097P}{{46}{2010}{{{Peng} et~al.}}{{{Peng}, {Ho}, {Impey} \& {Rix}}}}
\bibcite{2019arXiv190910291P}{{47}{2019}{{{Pringle} \& {Dobbs}}}{{{Pringle} \& {Dobbs}}}}
\bibcite{2009MNRAS.397..164R}{{48}{2009}{{{Ringermacher} \& {Mead}}}{{{Ringermacher} \& {Mead}}}}
\bibcite{2008A&A...489..115R}{{49}{2008}{{{Rodriguez-Fernandez} \& {Combes}}}{{{Rodriguez-Fernandez} \& {Combes}}}}
\bibcite{2006A&A...453...39R}{{50}{2006}{{{Romero-G{\'o}mez} et~al.}}{{{Romero-G{\'o}mez}, {Masdemont}, {Athanassoula} \& {Garc{\'\i }a-G{\'o}mez}}}}
\bibcite{pymc3_paper}{{51}{2016}{{{Salvatier} et~al.}}{{{Salvatier}, {Wiecki} \& {Fonnesbeck}}}}
\bibcite{1961hag..book.....S}{{52}{1961}{{{Sandage}}}{{{Sandage}}}}
\bibcite{2005ARA&A..43..581S}{{53}{2005}{{{Sandage}}}{{{Sandage}}}}
\bibcite{1976ApJ...209...53S}{{54}{1976}{{{Sanders} \& {Huntley}}}{{{Sanders} \& {Huntley}}}}
\bibcite{2013MNRAS.436.1074S}{{55}{2013}{{{Savchenko} \& {Reshetnikov}}}{{{Savchenko} \& {Reshetnikov}}}}
\bibcite{doi:10.1080/01621459.1987.10478517}{{56}{1987}{{Scholz \& Stephens}}{{Scholz \& Stephens}}}
\bibcite{2005MNRAS.359.1065S}{{57}{2005}{{{Seigar} et~al.}}{{{Seigar}, {Block}, {Puerari}, {Chorney} \& {James}}}}
\bibcite{2008ApJ...678L..93S}{{58}{2008}{{{Seigar} et~al.}}{{{Seigar}, {Kennefick}, {Kennefick} \& {Lacy}}}}
\bibcite{2017ApJ...834....7S}{{59}{2017}{{{Semczuk} et~al.}}{{{Semczuk}, {{\L }okas} \& {del Pino}}}}
\bibcite{2012MNRAS.423.1485S}{{60}{2012}{{{Skibba} et~al.}}{{{Skibba} et~al.,}}}
\bibcite{10.2307/2286009}{{61}{1974}{{Stephens}}{{Stephens}}}
\bibcite{Toomre1981}{{62}{1981}{{{Toomre}}}{{{Toomre}}}}
\bibcite{Vallee2015}{{63}{2015}{{Vall\'ee}}{{Vall\'ee}}}
\bibcite{Willett2013:1308.3496v2}{{64}{2013}{{Willett et~al.}}{{Willett et~al.,}}}
\bibcite{1975A&A....44..363Y}{{65}{1975}{{{Yoshizawa} \& {Wakamatsu}}}{{{Yoshizawa} \& {Wakamatsu}}}}
\bibcite{2019ApJ...871..194Y}{{66}{2019}{{{Yu} \& {Ho}}}{{{Yu} \& {Ho}}}}
\bibcite{1991rc3..book.....D}{{67}{1991}{{{de Vaucouleurs} et~al.}}{{{de Vaucouleurs}, {de Vaucouleurs}, {Corwin}, {Buta}, {Paturel} \& {Fouque}}}}
\@writefile{toc}{\contentsline {section}{\numberline {6}Data Availability}{12}{section.6}}
\newlabel{lastpage}{{6}{12}{Data Availability}{section.6}{}}