diff --git a/R/poisson_reg-glmnet.R b/R/poisson_reg-glmnet.R index c8853bf..8a4c72f 100644 --- a/R/poisson_reg-glmnet.R +++ b/R/poisson_reg-glmnet.R @@ -26,10 +26,6 @@ #' @export predict._fishnet <- function(object, new_data, type = NULL, opts = list(), penalty = NULL, multi = FALSE, ...) { - if (any(names(enquos(...)) == "newdata")) { - rlang::abort("Did you mean to use `new_data` instead of `newdata`?") - } - # See discussion in https://github.com/tidymodels/parsnip/issues/195 if (is.null(penalty) & !is.null(object$spec$args$penalty)) { penalty <- object$spec$args$penalty @@ -43,10 +39,6 @@ predict._fishnet <- #' @export predict_numeric._fishnet <- function(object, new_data, ...) { - if (any(names(enquos(...)) == "newdata")) { - rlang::abort("Did you mean to use `new_data` instead of `newdata`?") - } - object$spec <- parsnip::eval_args(object$spec) parsnip::predict_numeric.model_fit(object, new_data = new_data, ...) } @@ -65,10 +57,6 @@ predict_numeric._fishnet <- function(object, new_data, ...) { #' @export #' @keywords internal predict_raw._fishnet <- function(object, new_data, opts = list(), ...) { - if (any(names(enquos(...)) == "newdata")) { - rlang::abort("Did you mean to use `new_data` instead of `newdata`?") - } - object$spec <- parsnip::eval_args(object$spec) opts$s <- object$spec$args$penalty parsnip::predict_raw.model_fit(object, new_data = new_data, opts = opts, ...)