-
Notifications
You must be signed in to change notification settings - Fork 0
/
chis_case_study.r
264 lines (210 loc) · 7.53 KB
/
chis_case_study.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
## source would be:
## http://healthpolicy.ucla.edu/
## requested for account
## not yet received it
## following will be interesting:
## RBMI: BMI Category description
## BMI_P: BMI value
## RACEHPR2: race
## SRSEX: sex
## SRAGE_P: age
## MARIT2: Marital status
## AB1: General Health Condition
## ASTCUR: Current Asthma Status
## AB51: Type I or Type II Diabetes
## POVLL: Poverty level
# The dataset adult should be available
# The color scale used in the plot
BMI_fill <- scale_fill_brewer("BMI Category", palette = "Reds")
# Theme to fix category display in faceted plot
fix_strips <- theme(strip.text.y = element_text(angle = 0, hjust = 0, vjust = 0.1, size = 14),
strip.background = element_blank(),
legend.position = "none")
# Histogram, add BMI_fill and customizations
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1) +
fix_strips + facet_grid(RBMI ~ .) + theme_classic()
## other colouring:
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1) +
fix_strips + facet_grid(RBMI ~ .) + theme_classic() + BMI_fill
# Plot 1 - Count histogram
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1) +
BMI_fill
# Plot 2 - Density histogram
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1,aes(y = ..density..)) +
BMI_fill
# Plot 3 - Faceted count histogram
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1) +
BMI_fill + facet_grid(RBMI ~ .)
# Plot 4 - Faceted density histogram
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1,aes(y = ..density..)) +
BMI_fill + facet_grid(RBMI ~ .)
# Plot 5 - Density histogram with position = "fill"
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1,aes(y = ..density..),position="fill") +
BMI_fill
# Plot 6 - The accurate histogram
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(binwidth = 1,aes(y = ..count../sum(..count..)),position="fill") +
BMI_fill
# An attempt to facet the accurate frequency histogram from before (failed)
ggplot(adult, aes (x = SRAGE_P, fill= factor(RBMI))) +
geom_histogram(aes(y = ..count../sum(..count..)), binwidth = 1, position = "fill") +
BMI_fill +
facet_grid(RBMI ~ .)
# Create DF with table()
DF <- table(adult$RBMI,adult$SRAGE_P)
# Use apply on DF to get frequency of each group
DF_freq <- apply(DF,2,function(x) {x/sum(x)})
# Load reshape2 and use melt on DF to create DF_melted
library(reshape2)
DF_melted <- melt(DF_freq)
# Change names of DF_melted
names(DF_melted) <- c("FILL", "X", "value")
# Add code to make this a faceted plot
ggplot(DF_melted, aes(x = X, y = value, fill = FILL)) +
geom_bar(stat = "identity", position = "stack") +
BMI_fill +
facet_grid(FILL ~ .)
## preparations to mosaic plots:
# The initial contingency table
DF <- as.data.frame.matrix(table(adult$SRAGE_P, adult$RBMI))
# Add the columns groupsSum, xmax and xmin. Remove groupSum again.
DF$groupSum <- rowSums(DF)
DF$xmax <- cumsum(DF$groupSum)
DF$xmin <- DF$xmax - DF$groupSum
# The groupSum column needs to be removed, don't remove this line
DF$groupSum <- NULL
# Copy row names to variable X
DF$X <- row.names(DF)
# Melt the dataset
library(reshape2)
DF_melted <- melt(DF, id.vars = c("X", "xmin", "xmax"), variable.name = "FILL")
# dplyr call to calculate ymin and ymax - don't change
library(dplyr)
DF_melted <- DF_melted %>%
group_by(X) %>%
mutate(ymax = cumsum(value/sum(value)),
ymin = ymax - value/sum(value))
# Plot rectangles - don't change.
library(ggthemes)
ggplot(DF_melted, aes(ymin = ymin,
ymax = ymax,
xmin = xmin,
xmax = xmax,
fill = FILL)) +
geom_rect(colour = "white") +
scale_x_continuous(expand = c(0,0)) +
scale_y_continuous(expand = c(0,0)) +
BMI_fill +
theme_tufte()
## residual, over/under-representation
# Perform chi.sq test (RBMI and SRAGE_P)
results <- chisq.test(table(adult$RBMI, adult$SRAGE_P))
# Melt results$residuals and store as resid
resid <- melt(results$residuals)
# Change names of resid
names(resid) = c("FILL", "X", "residual")
# merge the two datasets:
DF_all <- merge(DF_melted,resid)
# Update plot command
library(ggthemes)
ggplot(DF_all, aes(ymin = ymin,
ymax = ymax,
xmin = xmin,
xmax = xmax,
fill = residual)) +
geom_rect() +
scale_fill_gradient2() +
scale_x_continuous(expand = c(0,0)) +
scale_y_continuous(expand = c(0,0)) +
theme_tufte()
## labelling:
# Position for labels on x axis
DF_all$xtext <- DF_all$xmin + (DF_all$xmax - DF_all$xmin)/2
# Position for labels on y axis (don't change)
index <- DF_all$xmax == max(DF_all$xmax)
DF_all$ytext <- DF_all$ymin[index] + (DF_all$ymax[index] - DF_all$ymin[index])/2
# Plot
ggplot(DF_all, aes(ymin = ymin, ymax = ymax, xmin = xmin,
xmax = xmax, fill = residual)) +
geom_rect(col = "white") +
# geom_text for ages (i.e. the x axis)
geom_text(aes(x = xtext,
label = X),
y = 1,
size = 3,
angle = 90,
hjust = 1,
show.legend = FALSE) +
# geom_text for BMI (i.e. the fill axis)
geom_text(aes(x = max(xmax),
y = ytext,
label = FILL),
size = 3,
hjust = 1,
show.legend = FALSE) +
scale_fill_gradient2() +
theme_tufte() +
theme(legend.position = "bottom")
## Generalisations
# Load all packages
library(ggplot2)
library(reshape2)
library(dplyr)
library(ggthemes)
# Script generalized into a function
mosaicGG <- function(data, X, FILL) {
# Proportions in raw data
DF <- as.data.frame.matrix(table(data[[X]], data[[FILL]]))
DF$groupSum <- rowSums(DF)
DF$xmax <- cumsum(DF$groupSum)
DF$xmin <- DF$xmax - DF$groupSum
DF$X <- row.names(DF)
DF$groupSum <- NULL
DF_melted <- melt(DF, id = c("X", "xmin", "xmax"), variable.name = "FILL")
library(dplyr)
DF_melted <- DF_melted %>%
group_by(X) %>%
mutate(ymax = cumsum(value/sum(value)),
ymin = ymax - value/sum(value))
# Chi-sq test
results <- chisq.test(table(data[[FILL]], data[[X]])) # fill and then x
resid <- melt(results$residuals)
names(resid) <- c("FILL", "X", "residual")
# Merge data
DF_all <- merge(DF_melted, resid)
# Positions for labels
DF_all$xtext <- DF_all$xmin + (DF_all$xmax - DF_all$xmin)/2
index <- DF_all$xmax == max(DF_all$xmax)
DF_all$ytext <- DF_all$ymin[index] + (DF_all$ymax[index] - DF_all$ymin[index])/2
# plot:
g <- ggplot(DF_all, aes(ymin = ymin, ymax = ymax, xmin = xmin,
xmax = xmax, fill = residual)) +
geom_rect(col = "white") +
geom_text(aes(x = xtext, label = X),
y = 1, size = 3, angle = 90, hjust = 1, show.legend = FALSE) +
geom_text(aes(x = max(xmax), y = ytext, label = FILL),
size = 3, hjust = 1, show.legend = FALSE) +
scale_fill_gradient2("Residuals") +
scale_x_continuous("Individuals", expand = c(0,0)) +
scale_y_continuous("Proportion", expand = c(0,0)) +
theme_tufte() +
theme(legend.position = "bottom")
print(g)
}
# BMI described by age
mosaicGG(adult, "SRAGE_P","RBMI")
# Poverty described by age
#mosaicGG(adult, "POVLL","SRAGE_P")
mosaicGG(adult, "SRAGE_P","POVLL")
# mtcars: am described by cyl
mosaicGG(mtcars,"cyl","am")
# Vocab: vocabulary described by education
library(car)
mosaicGG(Vocab, "education","vocabulary")