-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_finetune.py
262 lines (226 loc) · 10.5 KB
/
main_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import torch
import gym
import argparse
import os
import d4rl
from tqdm import trange
from coolname import generate_slug
import time
import json
import yaml
from log import Logger
import utils
from utils import VideoRecorder
import SPOT
from vae import VAE
from eval import eval_policy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Experiment
parser.add_argument("--policy", default="SPOT_TD3") # Policy name
parser.add_argument("--env", default="hopper-medium-v0") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--eval_freq", default=5e3, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=int) # Max time steps to run environment
parser.add_argument("--save_model", default=False, action="store_true") # Save model and optimizer parameters
parser.add_argument('--save_model_final', default=True, action='store_true')
parser.add_argument('--eval_episodes', default=10, type=int)
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--clip_to_eps', default=False, action='store_true')
# TD3
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005) # Target network update rate
parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument('--lr', default=3e-4, type=float)
parser.add_argument('--actor_lr', default=None, type=float)
# TD3 actor-critic
parser.add_argument('--actor_hidden_dim', default=256, type=int)
parser.add_argument('--critic_hidden_dim', default=256, type=int)
parser.add_argument('--actor_init_w', default=None, type=float)
parser.add_argument('--critic_init_w', default=None, type=float)
parser.add_argument('--actor_dropout', default=0.1, type=float)
# TD3 + BC
parser.add_argument("--alpha", default=0.4, type=float)
parser.add_argument("--normalize", default=True)
# VAE
parser.add_argument('--vae_model_path', default=None, type=str)
parser.add_argument('--beta', default=0.5, type=float)
parser.add_argument('--latent_dim', default=None, type=int)
parser.add_argument('--iwae', default=False, action='store_true')
parser.add_argument('--num_samples', default=1, type=int)
# SPOT
parser.add_argument('--lambd', default=1.0, type=float)
parser.add_argument('--without_Q_norm', default=False, action='store_true')
parser.add_argument('--lambd_cool', default=False, action='store_true')
parser.add_argument('--lambd_end', default=0.2, type=float)
# Antmaze
parser.add_argument('--antmaze_center_reward', default=0.0, type=float)
parser.add_argument('--antmaze_no_normalize', default=False, action='store_true')
# Work dir
parser.add_argument('--notes', default=None, type=str)
parser.add_argument('--work_dir', default='tmp', type=str)
# Config
parser.add_argument('--config', default=None, type=str)
# Finetune
parser.add_argument('--pretrain_model', default=None, type=str)
parser.add_argument('--pretrain_step', default=1000000, type=int)
parser.add_argument('--buffer_size', default=2000000, type=int)
parser.add_argument('--start_times', default=0, type=int)
args = parser.parse_args()
# log config
if args.config is not None:
with open(args.config, 'r') as f:
parser.set_defaults(**yaml.load(f.read(), Loader=yaml.FullLoader))
args = parser.parse_args()
args.cooldir = generate_slug(2)
# Build work dir
base_dir = 'runs'
utils.make_dir(base_dir)
base_dir = os.path.join(base_dir, args.work_dir)
utils.make_dir(base_dir)
args.work_dir = os.path.join(base_dir, args.env)
utils.make_dir(args.work_dir)
# make directory
ts = time.gmtime()
ts = time.strftime("%m-%d-%H:%M", ts)
exp_name = str(args.env) + '-' + ts + '-bs' + str(args.batch_size) + '-s' + str(args.seed)
if args.policy == 'SPOT_TD3':
exp_name += '-lamb' + str(args.lambd) + '-lamb_end' + str(args.lambd_end) + '-b' + \
str(args.beta) + '-a' + str(args.antmaze_center_reward) + '-lr' + str(args.lr)
else:
raise NotImplementedError
exp_name += '-' + args.cooldir
if args.notes is not None:
exp_name = args.notes + '_' + exp_name
args.work_dir = args.work_dir + '/' + exp_name
utils.make_dir(args.work_dir)
args.model_dir = os.path.join(args.work_dir, 'model')
utils.make_dir(args.model_dir)
args.video_dir = os.path.join(args.work_dir, 'video')
utils.make_dir(args.video_dir)
with open(os.path.join(args.work_dir, 'args.json'), 'w') as f:
json.dump(vars(args), f, sort_keys=True, indent=4)
utils.snapshot_src('.', os.path.join(args.work_dir, 'src'), '.gitignore')
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
# TD3
"policy_noise": args.policy_noise * max_action,
"noise_clip": args.noise_clip * max_action,
"policy_freq": args.policy_freq,
# SPOT
"lambd": args.lambd,
"lr": args.lr,
"actor_lr": args.actor_lr,
"without_Q_norm": args.without_Q_norm,
"num_samples": args.num_samples,
"iwae": args.iwae,
"actor_hidden_dim": args.actor_hidden_dim,
"critic_hidden_dim": args.critic_hidden_dim,
"actor_dropout": args.actor_dropout,
"actor_init_w": args.actor_init_w,
"critic_init_w": args.critic_init_w,
# finetune
"lambd_cool": args.lambd_cool,
"lambd_end": args.lambd_end,
}
# Initialize policy
if args.policy == 'SPOT_TD3':
vae = VAE(state_dim, action_dim, args.latent_dim if args.latent_dim else 2 * action_dim, max_action).to(device)
vae.load_state_dict(torch.load(args.vae_model_path))
vae.eval()
kwargs['vae'] = vae
kwargs['beta'] = args.beta
policy = SPOT.SPOT_TD3(**kwargs)
else:
raise NotImplementedError
replay_buffer = utils.ReplayBuffer(state_dim, action_dim, max_size=args.buffer_size)
replay_buffer.convert_D4RL_finetune(d4rl.qlearning_dataset(env))
assert replay_buffer.size + args.max_timesteps <= replay_buffer.max_size
if 'antmaze' in args.env and args.antmaze_center_reward is not None:
# Center reward for Ant-Maze
# See https://github.com/aviralkumar2907/CQL/blob/master/d4rl/examples/cql_antmaze_new.py#L22
replay_buffer.reward = np.where(replay_buffer.reward == 1.0, args.antmaze_center_reward, -1.0)
if args.normalize and not ('antmaze' in args.env and args.antmaze_no_normalize):
assert False
# TODO: normalize to self.state[:self.ptr]
mean, std = replay_buffer.normalize_states()
else:
print("No normalize")
mean, std = 0, 1
if args.clip_to_eps:
replay_buffer.clip_to_eps()
logger = Logger(args.work_dir, use_tb=True)
video = VideoRecorder(dir_name=args.video_dir)
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
episode_state = [state]
# load offline pretrained model
if args.pretrain_model is None:
print("No pretrained model")
exit(0)
else:
policy.load(args.pretrain_model, args.pretrain_step)
for t in trange(int(args.max_timesteps)):
episode_timesteps += 1
# Select action randomly or according to policy
action = (
policy.select_action(state) + np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if episode_timesteps < env._max_episode_steps else 0
if 'antmaze' in args.env and args.antmaze_center_reward is not None:
reward_original = reward
reward = args.antmaze_center_reward if done_bool else -1.0
# Store data in replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward_original
episode_state.append(state)
if t >= args.start_times:
policy.train_online(replay_buffer, args.batch_size, logger=logger)
# policy.train(replay_buffer, args.batch_size, logger=logger)
if done:
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
print(
f"Total T: {t+1} Episode Num: {episode_num+1} Episode T: {episode_timesteps} Reward: {episode_reward:.3f} Last Reward: {reward_original:.3f}")
# Reset environment
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
episode_state = [state]
# Evaluate episode
if t == 0 or (t + 1) % args.eval_freq == 0:
eval_episodes = 100 if t + 1 == int(args.max_timesteps) and 'antmaze' in args.env else args.eval_episodes
d4rl_score = eval_policy(args, t + 1, video, logger, policy, args.env,
args.seed, mean, std, eval_episodes=eval_episodes)
if args.save_model:
policy.save(args.model_dir)
if args.save_model_final:
policy.save(args.model_dir)
logger._sw.close()