-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_toy.py
353 lines (295 loc) · 13.1 KB
/
train_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import argparse
import os
import time
import math
import numpy as np
import torch
import lib.optimizers as optim
import lib.layers.base as base_layers
import lib.layers as layers
import lib.toy_data as toy_data
import lib.utils as utils
from lib.visualize_flow import visualize_transform
ACTIVATION_FNS = {
'identity': base_layers.Identity,
'relu': torch.nn.ReLU,
'tanh': torch.nn.Tanh,
'elu': torch.nn.ELU,
'selu': torch.nn.SELU,
'fullsort': base_layers.FullSort,
'maxmin': base_layers.MaxMin,
'swish': base_layers.Swish,
'lcube': base_layers.LipschitzCube,
'sin': base_layers.Sin,
}
parser = argparse.ArgumentParser()
parser.add_argument(
'--data', choices=['swissroll', '8gaussians', 'pinwheel', 'circles', 'moons', '2spirals', 'checkerboard', 'rings'],
type=str, default='pinwheel'
)
parser.add_argument('--arch', choices=['iresnet', 'realnvp', 'implicit'], default='implicit')
parser.add_argument('--coeff', type=float, default=0.9)
parser.add_argument('--vnorms', type=str, default='222222')
parser.add_argument('--n-lipschitz-iters', type=int, default=5)
parser.add_argument('--atol', type=float, default=None)
parser.add_argument('--rtol', type=float, default=None)
parser.add_argument('--learn-p', type=eval, choices=[True, False], default=False)
parser.add_argument('--mixed', type=eval, choices=[True, False], default=True)
parser.add_argument('--dims', type=str, default='128-128-128-128')
parser.add_argument('--act', type=str, choices=ACTIVATION_FNS.keys(), default='sin')
parser.add_argument('--nblocks', type=int, default=100)
parser.add_argument('--brute-force', type=eval, choices=[True, False], default=False)
parser.add_argument('--actnorm', type=eval, choices=[True, False], default=False)
parser.add_argument('--batchnorm', type=eval, choices=[True, False], default=False)
parser.add_argument('--exact-trace', type=eval, choices=[True, False], default=False)
parser.add_argument('--n-power-series', type=int, default=None)
parser.add_argument('--n-samples', type=int, default=1)
parser.add_argument('--n-dist', choices=['geometric', 'poisson'], default='geometric')
parser.add_argument('--niters', type=int, default=50000)
parser.add_argument('--batch_size', type=int, default=1000)
parser.add_argument('--test_batch_size', type=int, default=10000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight-decay', type=float, default=1e-5)
parser.add_argument('--annealing-iters', type=int, default=0)
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--begin-epoch', type=int, default=0)
parser.add_argument('--save', type=str, default='experiments/iresnet_toy')
parser.add_argument('--viz_freq', type=int, default=1000)
parser.add_argument('--val_freq', type=int, default=1000)
parser.add_argument('--log_freq', type=int, default=100)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info(args)
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if device.type == 'cuda':
torch.cuda.manual_seed(args.seed)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def standard_normal_sample(size):
return torch.randn(size)
def standard_normal_logprob(z):
logZ = -0.5 * np.log(2 * np.pi)
return logZ - z.pow(2) / 2
def compute_loss(args, model, batch_size=None, beta=1.):
if batch_size is None: batch_size = args.batch_size
# load data
x = toy_data.inf_train_gen(args.data, batch_size=batch_size)
x = torch.from_numpy(x).type(torch.float32).to(device)
zero = torch.zeros(x.shape[0], 1).to(x)
# transform to z
z, delta_logp = model(x, zero)
# compute log p(z)
logpz = standard_normal_logprob(z).sum(1, keepdim=True)
logpx = logpz - beta * delta_logp
loss = -torch.mean(logpx)
return loss, torch.mean(logpz), torch.mean(-delta_logp)
def parse_vnorms():
ps = []
for p in args.vnorms:
if p == 'f':
ps.append(float('inf'))
else:
ps.append(float(p))
return ps[:-1], ps[1:]
def compute_p_grads(model):
scales = 0.
nlayers = 0
for m in model.modules():
if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear):
scales = scales + m.compute_one_iter()
nlayers += 1
scales.mul(1 / nlayers).mul(0.01).backward()
for m in model.modules():
if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear):
if m.domain.grad is not None and torch.isnan(m.domain.grad):
m.domain.grad = None
def build_nnet(dims, activation_fn=torch.nn.ReLU):
nnet = []
domains, codomains = parse_vnorms()
if args.learn_p:
if args.mixed:
domains = [torch.nn.Parameter(torch.tensor(0.)) for _ in domains]
else:
domains = [torch.nn.Parameter(torch.tensor(0.))] * len(domains)
codomains = domains[1:] + [domains[0]]
for i, (in_dim, out_dim, domain, codomain) in enumerate(zip(dims[:-1], dims[1:], domains, codomains)):
if i > 0:
nnet.append(activation_fn())
nnet.append(
base_layers.get_linear(
in_dim,
out_dim,
coeff=args.coeff,
n_iterations=args.n_lipschitz_iters,
atol=args.atol,
rtol=args.rtol,
domain=domain,
codomain=codomain,
zero_init=(out_dim == 2),
)
)
return torch.nn.Sequential(*nnet)
def update_lipschitz(model, n_iterations):
for m in model.modules():
if isinstance(m, base_layers.SpectralNormConv2d) or isinstance(m, base_layers.SpectralNormLinear):
m.compute_weight(update=True, n_iterations=n_iterations)
if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear):
m.compute_weight(update=True, n_iterations=n_iterations)
def get_ords(model):
ords = []
for m in model.modules():
if isinstance(m, base_layers.InducedNormConv2d) or isinstance(m, base_layers.InducedNormLinear):
domain, codomain = m.compute_domain_codomain()
if torch.is_tensor(domain):
domain = domain.item()
if torch.is_tensor(codomain):
codomain = codomain.item()
ords.append(domain)
ords.append(codomain)
return ords
def pretty_repr(a):
return '[[' + ','.join(list(map(lambda i: f'{i:.2f}', a))) + ']]'
if __name__ == '__main__':
activation_fn = ACTIVATION_FNS[args.act]
if args.arch == 'iresnet':
dims = [2] + list(map(int, args.dims.split('-'))) + [2]
blocks = []
if args.actnorm: blocks.append(layers.ActNorm1d(2))
for _ in range(args.nblocks):
blocks.append(
layers.iResBlock(
build_nnet(dims, activation_fn),
n_dist=args.n_dist,
n_power_series=args.n_power_series,
exact_trace=args.exact_trace,
brute_force=args.brute_force,
n_samples=args.n_samples,
neumann_grad=False,
grad_in_forward=False,
)
)
if args.actnorm: blocks.append(layers.ActNorm1d(2))
if args.batchnorm: blocks.append(layers.MovingBatchNorm1d(2))
model = layers.SequentialFlow(blocks).to(device)
elif args.arch == 'implicit':
dims = [2] + list(map(int, args.dims.split('-'))) + [2]
blocks = []
if args.actnorm: blocks.append(layers.ActNorm1d(2))
for _ in range(args.nblocks):
blocks.append(
layers.imBlock(
build_nnet(dims, activation_fn),
build_nnet(dims, activation_fn),
n_dist=args.n_dist,
n_power_series=args.n_power_series,
exact_trace=args.exact_trace,
brute_force=args.brute_force,
n_samples=args.n_samples,
neumann_grad=False,
grad_in_forward=False, # toy data needn't save memory
)
)
model = torch.nn.DataParallel(layers.SequentialFlow(blocks).to(device))
elif args.arch == 'realnvp':
blocks = []
for _ in range(args.nblocks):
blocks.append(layers.CouplingBlock(2, swap=False))
blocks.append(layers.CouplingBlock(2, swap=True))
if args.actnorm: blocks.append(layers.ActNorm1d(2))
if args.batchnorm: blocks.append(layers.MovingBatchNorm1d(2))
model = layers.SequentialFlow(blocks).to(device)
logger.info(model)
logger.info("Number of trainable parameters: {}".format(count_parameters(model)))
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
time_meter = utils.RunningAverageMeter(0.93)
loss_meter = utils.RunningAverageMeter(0.93)
logpz_meter = utils.RunningAverageMeter(0.93)
delta_logp_meter = utils.RunningAverageMeter(0.93)
end = time.time()
if (args.resume is not None):
logger.info('Resuming model from {}'.format(args.resume))
with torch.no_grad():
x = toy_data.inf_train_gen(args.data, batch_size=args.batch_size)
x = torch.from_numpy(x).type(torch.float32).to(device)
model(x, restore=True)
checkpt = torch.load(args.resume)
sd = {k: v for k, v in checkpt['state_dict'].items() if 'last_n_samples' not in k}
state = model.state_dict()
state.update(sd)
model.load_state_dict(state, strict=True)
del checkpt
del state
else:
with torch.no_grad():
x = toy_data.inf_train_gen(args.data, batch_size=args.batch_size)
x = torch.from_numpy(x).type(torch.float32).to(device)
model(x, restore=True)
best_loss = float('inf')
model.train()
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
beta = min(1, itr / args.annealing_iters) if args.annealing_iters > 0 else 1.
loss, logpz, delta_logp = compute_loss(args, model, beta=beta)
loss_meter.update(loss.item())
logpz_meter.update(logpz.item())
delta_logp_meter.update(delta_logp.item())
loss.backward()
if args.learn_p and itr > args.annealing_iters: compute_p_grads(model)
optimizer.step()
update_lipschitz(model, args.n_lipschitz_iters)
time_meter.update(time.time() - end)
if itr % args.log_freq == 0:
logger.info(
'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f})'
' | Logp(z) {:.6f}({:.6f}) | DeltaLogp {:.6f}({:.6f})'.format(
itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, logpz_meter.val, logpz_meter.avg,
delta_logp_meter.val, delta_logp_meter.avg
)
)
if itr % args.val_freq == 0 or itr == args.niters:
update_lipschitz(model, 200)
with torch.no_grad():
model.eval()
test_loss, test_logpz, test_delta_logp = compute_loss(args, model, batch_size=args.test_batch_size)
log_message = (
'[TEST] Iter {:04d} | Test Loss {:.6f} '
'| Test Logp(z) {:.6f} | Test DeltaLogp {:.6f}'.format(
itr, test_loss.item(), test_logpz.item(), test_delta_logp.item()
)
)
logger.info(log_message)
logger.info('Ords: {}'.format(pretty_repr(get_ords(model))))
if test_loss.item() < best_loss:
best_loss = test_loss.item()
utils.makedirs(args.save)
torch.save({
'args': args,
'state_dict': model.state_dict(),
}, os.path.join(args.save, 'checkpt.pth'))
model.train()
if itr == 1 or itr % args.viz_freq == 0:
with torch.no_grad():
model.eval()
p_samples = toy_data.inf_train_gen(args.data, batch_size=20000)
sample_fn, density_fn = model.module.inverse, model.forward
plt.figure(figsize=(9, 3))
visualize_transform(
p_samples, torch.randn, standard_normal_logprob, transform=sample_fn, inverse_transform=density_fn,
samples=True, npts=400, device=device
)
fig_filename = os.path.join(args.save, 'figs', '{:04d}.jpg'.format(itr))
utils.makedirs(os.path.dirname(fig_filename))
plt.savefig(fig_filename)
plt.close()
model.train()
end = time.time()
logger.info('Training has finished.')