-
Notifications
You must be signed in to change notification settings - Fork 4
/
run_preference.py
241 lines (213 loc) · 9.01 KB
/
run_preference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import logging
import sys
import torch
import transformers
transformers.trainer_utils.PREFIX_CHECKPOINT_DIR = "zephyr_checkpoint"
transformers.trainer.PREFIX_CHECKPOINT_DIR = "zephyr_checkpoint"
from transformers import AutoModelForCausalLM, set_seed
from accelerate import Accelerator
from alignment import (
DataArguments,
H4ArgumentParser,
ModelArguments,
get_datasets,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
get_tokenizer,
)
from peft import PeftConfig, PeftModel
from preference_trainer import NCATrainer_pairwise
from configs import NCAConfig
from data_utils import apply_chat_template
logger = logging.getLogger(__name__)
from huggingface_hub.utils._validators import HFValidationError
from huggingface_hub import list_repo_files
def is_adapter_model(model_name_or_path: str, revision: str = "main") -> bool:
try: # Try first if model on a Hub repo
repo_files = list_repo_files(model_name_or_path, revision=revision)
except HFValidationError: # If not, check local repo
import os
repo_files = os.listdir(model_name_or_path)
return "adapter_model.safetensors" in repo_files or "adapter_model.bin" in repo_files
def main():
parser = H4ArgumentParser((ModelArguments, DataArguments, NCAConfig))
model_args, data_args, training_args = parser.parse()
training_args.logging_dir= os.path.join(training_args.output_dir,"manual_runs")
training_args.run_name = os.path.basename(training_args.output_dir)
#######
# Setup
#######
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.info(f"Model parameters {model_args}")
logger.info(f"Data parameters {data_args}")
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed for reproducibility
set_seed(training_args.seed)
# Increase distributed timeout to 3h to enable push to Hub to complete
accelerator = Accelerator()
###############
# Load datasets
###############
raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits)
logger.info(
f"Training on the following splits: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
)
column_names = list(raw_datasets["train"].features)
#####################################
# Load tokenizer and process datasets
#####################################
data_args.truncation_side = "left" # Truncate from left to ensure we don't lose labels in final turn
tokenizer = get_tokenizer(model_args, data_args)
#####################
# Apply chat template
#####################
raw_datasets = raw_datasets.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer, "task": "dpo"},
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
desc="Formatting comparisons with prompt template",
load_from_cache_file=False
)
# Replace column names with what TRL needs, text_chosen -> chosen and text_rejected -> rejected
for split in ["train", "test"]:
raw_datasets[split] = raw_datasets[split].rename_columns(
{"text_prompt": "prompt", "text_chosen": "chosen", "text_rejected": "rejected"}
)
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
use_flash_attention_2=model_args.use_flash_attention_2,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map(),
quantization_config=get_quantization_config(model_args),
)
print("Using {}######################################################".format(model_args.use_flash_attention_2))
model = model_args.model_name_or_path
if is_adapter_model(model, model_args.model_revision):
print("merging base model")
# load the model, merge the adapter weights and unload the adapter
# Note: to run QLora, you will need to merge the based model separately as the merged model in 16bit
logger.info(f"Merging peft adapters for {model_args.model_name_or_path=}")
peft_config = PeftConfig.from_pretrained(model_args.model_name_or_path, revision=model_args.model_revision)
model_kwargs = dict(
revision=model_args.base_model_revision,
trust_remote_code=model_args.trust_remote_code,
use_flash_attention_2=model_args.use_flash_attention_2,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
)
base_model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
**model_kwargs,
)
model = PeftModel.from_pretrained(
base_model, model_args.model_name_or_path, revision=model_args.model_revision
)
model.eval()
model = model.merge_and_unload()
model_kwargs = None
ref_model = model
ref_model_kwargs = model_kwargs
if model_args.use_peft is True:
ref_model = None
ref_model_kwargs = None
#########################
# Instantiate DPO trainer
#########################
dpo_trainer = NCATrainer_pairwise(
model,
ref_model,
model_init_kwargs=model_kwargs,
ref_model_init_kwargs=ref_model_kwargs,
args=training_args,
beta=training_args.beta,
loss_type=training_args.loss_type,
train_dataset=raw_datasets["train"],
eval_dataset=raw_datasets["test"],
tokenizer=tokenizer,
max_length=training_args.max_length,
max_prompt_length=training_args.max_prompt_length,
peft_config=get_peft_config(model_args),
)
print("############################################# Trainer init finished")
###############
# Training loop
###############
train_result = dpo_trainer.train()
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(raw_datasets["train"])
)
metrics["train_samples"] = min(max_train_samples, len(raw_datasets["train"]))
dpo_trainer.log_metrics("train", metrics)
dpo_trainer.save_metrics("train", metrics)
dpo_trainer.save_state()
logger.info("*** Training complete ***")
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = dpo_trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(raw_datasets["test"])
)
metrics["eval_samples"] = min(max_eval_samples, len(raw_datasets["test"]))
dpo_trainer.log_metrics("eval", metrics)
dpo_trainer.save_metrics("eval", metrics)
##################################
# Save model and create model card
##################################
dpo_trainer.save_model(training_args.output_dir)
# Save everything else on main process
if accelerator.is_main_process:
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": list(data_args.dataset_mixer.keys()),
"dataset_tags": list(data_args.dataset_mixer.keys()),
"tags": ["alignment-handbook"],
}
dpo_trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
dpo_trainer.model.config.use_cache = True
dpo_trainer.model.config.save_pretrained(training_args.output_dir)
if training_args.push_to_hub is True:
dpo_trainer.push_to_hub()
# Ensure we don't timeout on model save / push to Hub
logger.info("*** Waiting for all processes to finish ***")
accelerator.wait_for_everyone()
logger.info("*** Run complete! ***")
if __name__ == "__main__":
main()