-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathctrleval.py
212 lines (181 loc) · 10.2 KB
/
ctrleval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from transformers import PegasusTokenizer
from transformers import PegasusForConditionalGeneration
import torch
import numpy as np
from nltk.tokenize import sent_tokenize
from torch.nn import CrossEntropyLoss
from tqdm import tqdm
class CTRLEval:
def __init__(self, iwf_dir=None, prompt_dir=None, verbal_dir=None,
device='cuda', model_name_or_path='google/pegasus-large'):
# inverse word frequency (IWF) for each token
with open(iwf_dir, 'r') as f_iwf:
self.iwf_score = [float(line.strip()) for line in f_iwf.readlines()]
# load prompts for attribute relevance
with open(prompt_dir, 'r') as f_pr:
self.prompt_list = [line.strip() for line in f_pr.readlines()]
# load verbalizers for attribute relevance
self.verbal_list = []
with open(verbal_dir, 'r') as f_veb:
line_id = 0
for line in f_veb.readlines():
if line_id == 0:
# first line: label name
self.label_name = line.strip().split('\t')
else:
# following lines: label word (verbalizer) for each label
self.verbal_list.append(line.strip().split('\t'))
line_id += 1
# device: cuda (for gpu) / cpu
self.device = device
# model_name_or_path: model name or the path for the downloaded pre-trained model
self.model = PegasusForConditionalGeneration.from_pretrained(model_name_or_path).to(device)
self.tokenizer = PegasusTokenizer.from_pretrained(model_name_or_path)
self.loss_fct = CrossEntropyLoss(reduction='none', ignore_index=self.model.config.pad_token_id)
def lm_score(self, src_text, tgt_text, has_iwf=True, add_special_tokens=True):
# compute the log probability of pre-trained models
batch = self.tokenizer(src_text, truncation=True, padding='longest',
return_tensors="pt").to(self.device)
labels = self.tokenizer(tgt_text, truncation=True, padding='longest', add_special_tokens=add_special_tokens,
return_tensors="pt").to(self.device)
# use IWF scores as weights for coherence and consistency
if has_iwf:
tgt_score = [max([self.iwf_score[token_id] for token_id in
labels['input_ids'][label_id].cpu().numpy()]) for label_id in
range(labels['input_ids'].shape[0])]
else:
tgt_score = []
output = self.model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'],
labels=labels['input_ids'])
logits = output.logits.view(-1, self.model.config.vocab_size)
loss = self.loss_fct(logits, labels['input_ids'].view(-1))
tgt_len = labels['attention_mask'].sum(dim=1)
loss = loss.view(labels['input_ids'].shape[0], -1)
loss = loss.sum(dim=1) / tgt_len
return loss, tgt_score
def coh_score(self, data, batch_size):
# coherence
data_split = [sent_tokenize(data_ele) for data_ele in data]
def get_mask_data(data_list):
# mask each sentence respectively
src_list, tgt_list, len_list = [], [], []
for data_ele in data_list:
src_list_ele, tgt_list_ele = [], []
for idx in range(len(data_ele)):
tgt_list_ele.append(data_ele[idx])
src_list_ele.append(' '.join(data_ele[:idx]) + ' <mask_1> ' + ' '.join(data_ele[idx + 1:]))
src_list.extend(src_list_ele)
tgt_list.extend(tgt_list_ele)
len_list.append(len(data_ele))
return src_list, tgt_list, len_list
# data_len: list of the number of sentences in each generated result
src_data, tgt_data, data_len = get_mask_data(data_split)
# eval_score: score of each pattern evaluator
# beta: (unnormalized) weight factor of each pattern evaluator
eval_score, beta = [], []
for data_id in tqdm(range(0, len(src_data), batch_size)):
src_text, tgt_text = src_data[data_id: data_id + batch_size], tgt_data[data_id: data_id + batch_size]
self.model.eval()
with torch.no_grad():
loss, tgt_score = self.lm_score(src_text, tgt_text)
cur_score = [-loss_ele.detach().cpu().numpy() for loss_ele in loss]
eval_score.extend(cur_score)
beta.extend(tgt_score)
# compute final score via the weighted sum of pattern evaluators
data_st = 0
res_score = []
for len_ele in data_len:
if sum(beta[data_st: data_st + len_ele]) > 0:
res_score.append(np.dot(eval_score[data_st: data_st + len_ele], beta[data_st: data_st + len_ele]) /
sum(beta[data_st: data_st + len_ele]))
else:
res_score.append(np.mean(eval_score[data_st: data_st + len_ele]))
data_st += len_ele
return res_score
def cons_score(self, data, prefix, batch_size):
# consistency
def get_mask_data(data_list, prefix_list):
# mask the prefix and generated result respectively
src_list, tgt_list, len_list = [], [], []
for data_ele, prefix_ele in zip(data_list, prefix_list):
assert data_ele.index(prefix_ele) == 0
src_list_ele = [prefix_ele + ' <mask_1>', '<mask_1> ' + data_ele[len(prefix_ele):]]
tgt_list_ele = [data_ele[len(prefix_ele):], prefix_ele]
src_list.extend(src_list_ele)
tgt_list.extend(tgt_list_ele)
len_list.append(2)
return src_list, tgt_list, len_list
src_data, tgt_data, data_len = get_mask_data(data, prefix)
# eval_score: score of each pattern evaluator
# beta: (unnormalized) weight factor of each pattern evaluator
eval_score, beta = [], []
for data_id in tqdm(range(0, len(src_data), batch_size)):
src_text, tgt_text = src_data[data_id: data_id + batch_size], tgt_data[data_id: data_id + batch_size]
self.model.eval()
with torch.no_grad():
loss, tgt_score = self.lm_score(src_text, tgt_text, add_special_tokens=False)
cur_score = [-loss_ele.detach().cpu().numpy() for loss_ele in loss]
eval_score.extend(cur_score)
beta.extend(tgt_score)
# compute final score via the weighted sum of pattern evaluators
data_st = 0
res_score = []
for len_ele in data_len:
if sum(beta[data_st: data_st + len_ele]) > 0:
res_score.append(np.dot(eval_score[data_st: data_st + len_ele], beta[data_st: data_st + len_ele]) /
sum(beta[data_st: data_st + len_ele]))
else:
res_score.append(np.mean(eval_score[data_st: data_st + len_ele]))
data_st += len_ele
return res_score
def ar_score(self, data, label_str, batch_size):
# attribute relevance
label = [self.label_name.index(label_ele) for label_ele in label_str]
def get_mask_data(data_list, prompt_list, verbal_list):
# use prompts and verbalizers to generate data
src_list, tgt_list, len_list = [], [], []
for data_ele in data_list:
src_list_ele, tgt_list_ele = [], []
for idx in range(len(prompt_list)):
for idy in range(len(verbal_list)):
for idz in range(len(verbal_list[0])):
src_list_ele.append(prompt_list[idx].replace('<gen_result>',
data_ele).replace('<mask_token>', '<mask_1>'))
tgt_list_ele.append(verbal_list[idy][idz])
src_list.extend(src_list_ele)
tgt_list.extend(tgt_list_ele)
return src_list, tgt_list
src_data, tgt_data = get_mask_data(data, self.prompt_list, self.verbal_list)
# eval_score: LM score for each pair of prompts and verbalizers
eval_score, beta = [], []
for data_id in tqdm(range(0, len(src_data), batch_size)):
src_text, tgt_text = src_data[data_id: data_id + batch_size], tgt_data[data_id: data_id + batch_size]
self.model.eval()
with torch.no_grad():
loss, _ = self.lm_score(src_text, tgt_text, has_iwf=False, add_special_tokens=False)
cur_score = [torch.exp(-loss_ele).detach().cpu().numpy() for loss_ele in loss]
eval_score.extend(cur_score)
score_pair = np.reshape(eval_score, (-1, len(self.verbal_list[0])))
# compute unnormalized weight scores
weight_unnormal = np.sum(score_pair, axis=1)
# compute the score of each pattern evaluator
score_pair /= np.sum(score_pair, axis=1, keepdims=True)
score_data = np.reshape(score_pair, (-1, len(self.prompt_list) * len(self.verbal_list), len(self.verbal_list[0])))
weight_unnormal = np.reshape(weight_unnormal, (-1, len(self.prompt_list) * len(self.verbal_list)))
# compute normalized weight scores
weight_normal = weight_unnormal / np.sum(weight_unnormal, axis=1, keepdims=True)
weight_normal = np.expand_dims(weight_normal, axis=2)
res_score = np.choose(np.array(label), np.sum(score_data * weight_normal, axis=1).T)
return res_score
def score(self, aspect, data, prefix=None, label=None, batch_size=1):
# aspect: coh (coherence), cons (consistency), or ar (attribute relevance)
# data: list of generated texts
# prefix: list of content prefixes
# label: list of attribute labels
if aspect == 'coh':
return self.coh_score(data, batch_size)
else:
if aspect == 'cons':
return self.cons_score(data, prefix, batch_size)
else:
return self.ar_score(data, label, batch_size)