diff --git a/Project.toml b/Project.toml index 3a52b3fd..987092d0 100644 --- a/Project.toml +++ b/Project.toml @@ -31,6 +31,7 @@ SpeedMapping = "f1835b91-879b-4a3f-a438-e4baacf14412" Subscripts = "2b7f82d5-8785-4f63-971e-f18ddbeb808e" SymPyPythonCall = "bc8888f7-b21e-4b7c-a06a-5d9c9496438c" Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" +ThreadedSparseArrays = "59d54670-b8ac-4d81-ab7a-bb56233e17ab" [weakdeps] StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd" @@ -61,6 +62,7 @@ SpeedMapping = "^0.3" Subscripts = "^0.1" SymPyPythonCall = "^0.1.1" Symbolics = "^5" +ThreadedSparseArrays = "^0.2" julia = "1.8" [extras] diff --git a/docs/src/unfinished_docs/todo.md b/docs/src/unfinished_docs/todo.md index 80241811..61df8635 100644 --- a/docs/src/unfinished_docs/todo.md +++ b/docs/src/unfinished_docs/todo.md @@ -4,6 +4,7 @@ - [ ] implement occasionally binding constraints with shocks - [ ] recheck get function examples and docs +- [ ] set to 0 SS values < 1e-12 - [ ] write method of moments how to - [ ] autocorr and covariance with derivatives. return 3d array - [ ] Docs: document outputs and associated functions to work with function diff --git a/src/MacroModelling.jl b/src/MacroModelling.jl index 4e362055..8aab2dfd 100644 --- a/src/MacroModelling.jl +++ b/src/MacroModelling.jl @@ -3,6 +3,7 @@ module MacroModelling import DocStringExtensions: FIELDS, SIGNATURES, TYPEDEF, TYPEDSIGNATURES, TYPEDFIELDS # import StatsFuns: normcdf +import ThreadedSparseArrays using PrecompileTools import SpecialFunctions: erfcinv, erfc import SymPyPythonCall as SPyPyC @@ -171,57 +172,120 @@ function warshall_algorithm!(R::SparseMatrixCSC{Bool,Int64}) return R end +function combine_pairs(v::Vector{Pair{Vector{Symbol}, Vector{Symbol}}}) + i = 1 + while i <= length(v) + subset_found = false + for j in i+1:length(v) + # Check if v[i].second is subset of v[j].second or vice versa + if all(elem -> elem in v[j].second, v[i].second) || all(elem -> elem in v[i].second, v[j].second) + # Combine the first elements and assign to the one with the larger second element + if length(v[i].second) > length(v[j].second) + v[i] = v[i].first ∪ v[j].first => v[i].second + else + v[j] = v[i].first ∪ v[j].first => v[j].second + end + # Remove the one with the smaller second element + deleteat!(v, length(v[i].second) > length(v[j].second) ? j : i) + subset_found = true + break + end + end + # If no subset was found for v[i], move to the next element + if !subset_found + i += 1 + end + end + return v +end -function determine_efficient_order(∇₁::SparseMatrixCSC{<: Real}, - T::timings, - variables::Union{Symbol_input,String_input}) +function determine_efficient_order(𝐒₁::Matrix{<: Real}, + T::timings, + variables::Union{Symbol_input,String_input}; + tol::AbstractFloat = eps()) + orders = Pair{Vector{Symbol}, Vector{Symbol}}[] + + nˢ = T.nPast_not_future_and_mixed + if variables == :full_covar - return [T.var => T.var] + return [T.var => T.past_not_future_and_mixed] else - var_idx = parse_variables_input_to_index(variables, T) + var_idx = MacroModelling.parse_variables_input_to_index(variables, T) observables = T.var[var_idx] end - expand = [ spdiagm(ones(T.nVars))[T.future_not_past_and_mixed_idx,:], - spdiagm(ones(T.nVars))[T.past_not_future_and_mixed_idx,:]] - - ∇₊ = ∇₁[:,1:T.nFuture_not_past_and_mixed] * expand[1] - ∇₀ = ∇₁[:,T.nFuture_not_past_and_mixed .+ range(1,T.nVars)] - ∇₋ = ∇₁[:,T.nFuture_not_past_and_mixed + T.nVars .+ range(1,T.nPast_not_future_and_mixed)] * expand[2] + for obs in observables + obs_in_var_idx = indexin([obs],T.var) + dependencies_in_states = vec(sum(abs, 𝐒₁[obs_in_var_idx,1:nˢ], dims=1) .> tol) .> 0 - incidence = abs.(∇₊) + abs.(∇₀) + abs.(∇₋) + while dependencies_in_states .| vec(abs.(dependencies_in_states' * 𝐒₁[indexin(T.past_not_future_and_mixed, T.var),1:nˢ]) .> tol) != dependencies_in_states + dependencies_in_states = dependencies_in_states .| vec(abs.(dependencies_in_states' * 𝐒₁[indexin(T.past_not_future_and_mixed, T.var),1:nˢ]) .> tol) + end - Q, P, R, nmatch, n_blocks = BlockTriangularForm.order(sparse(incidence)) - R̂ = [] - for i in 1:n_blocks - [push!(R̂, n_blocks - i + 1) for ii in R[i]:R[i+1] - 1] + dependencies = T.past_not_future_and_mixed[dependencies_in_states] + + push!(orders,[obs] => sort(dependencies)) end - push!(R̂,1) + + sort!(orders, by = x -> length(x[2]), rev = true) + + return combine_pairs(orders) +end + +# function determine_efficient_order(∇₁::SparseMatrixCSC{<: Real}, +# T::timings, +# variables::Union{Symbol_input,String_input}; +# tol::AbstractFloat = eps()) + +# droptol!(∇₁, tol) + +# if variables == :full_covar +# return [T.var => T.var] +# else +# var_idx = parse_variables_input_to_index(variables, T) +# observables = T.var[var_idx] +# end + +# expand = [ spdiagm(ones(T.nVars))[T.future_not_past_and_mixed_idx,:], +# spdiagm(ones(T.nVars))[T.past_not_future_and_mixed_idx,:]] - vars = hcat(P, R̂)' - eqs = hcat(Q, R̂)' +# ∇₊ = ∇₁[:,1:T.nFuture_not_past_and_mixed] * expand[1] +# ∇₀ = ∇₁[:,T.nFuture_not_past_and_mixed .+ range(1,T.nVars)] +# ∇₋ = ∇₁[:,T.nFuture_not_past_and_mixed + T.nVars .+ range(1,T.nPast_not_future_and_mixed)] * expand[2] + +# incidence = abs.(∇₊) + abs.(∇₀) + abs.(∇₋) + +# Q, P, R, nmatch, n_blocks = BlockTriangularForm.order(sparse(incidence)) +# R̂ = [] +# for i in 1:n_blocks +# [push!(R̂, n_blocks - i + 1) for ii in R[i]:R[i+1] - 1] +# end +# push!(R̂,1) - dependency_matrix = incidence[vars[1,:], eqs[1,:]] .!= 0 +# vars = hcat(P, R̂)' +# eqs = hcat(Q, R̂)' - warshall_algorithm!(dependency_matrix) - - solve_order = Vector{Symbol}[] - already_solved_for = Set{Symbol}() - corresponding_dependencies = Vector{Symbol}[] - - for obs in intersect(T.var[eqs[1,:]], observables) - dependencies = T.var[eqs[1,:]][findall(dependency_matrix[indexin([obs], T.var[eqs[1,:]])[1],:])] - to_be_solved_for = setdiff(intersect(observables, dependencies), already_solved_for) - if length(to_be_solved_for) > 0 - push!(solve_order, to_be_solved_for) - push!(corresponding_dependencies, dependencies) - end - push!(already_solved_for, intersect(observables, dependencies)...) - end - - return solve_order .=> corresponding_dependencies -end +# dependency_matrix = incidence[vars[1,:], eqs[1,:]] .!= 0 + +# warshall_algorithm!(dependency_matrix) + +# solve_order = Vector{Symbol}[] +# already_solved_for = Set{Symbol}() +# corresponding_dependencies = Vector{Symbol}[] + +# for obs in intersect(T.var[eqs[1,:]], observables) +# dependencies = T.var[eqs[1,:]][findall(dependency_matrix[indexin([obs], T.var[eqs[1,:]])[1],:])] +# to_be_solved_for = setdiff(intersect(observables, dependencies), already_solved_for) +# if length(to_be_solved_for) > 0 +# push!(solve_order, to_be_solved_for) +# push!(corresponding_dependencies, dependencies) +# end +# push!(already_solved_for, intersect(observables, dependencies)...) +# end + +# return solve_order .=> corresponding_dependencies +# end @@ -3134,12 +3198,13 @@ end function covariance_parameter_derivatives_third_order(parameters::Vector{ℱ.Dual{Z,S,N}}, variables::Union{Symbol_input,String_input}, parameters_idx, - 𝓂::ℳ; + 𝓂::ℳ; + dependencies_tol::AbstractFloat = 1e-12, verbose::Bool = false) where {Z,S,N} params = copy(𝓂.parameter_values) params = convert(Vector{ℱ.Dual{Z,S,N}},params) params[parameters_idx] = parameters - convert(Vector{ℱ.Dual{Z,S,N}},max.(ℒ.diag(calculate_third_order_moments(params, variables, 𝓂, verbose = verbose)[1]),eps(Float64))) + convert(Vector{ℱ.Dual{Z,S,N}},max.(ℒ.diag(calculate_third_order_moments(params, variables, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose)[1]),eps(Float64))) end @@ -3148,11 +3213,12 @@ function covariance_parameter_derivatives_third_order(parameters::ℱ.Dual{Z,S,N variables::Union{Symbol_input,String_input}, parameters_idx::Int, 𝓂::ℳ; + dependencies_tol::AbstractFloat = 1e-12, verbose::Bool = false) where {Z,S,N} params = copy(𝓂.parameter_values) params = convert(Vector{ℱ.Dual{Z,S,N}},params) params[parameters_idx] = parameters - convert(Vector{ℱ.Dual{Z,S,N}},max.(ℒ.diag(calculate_third_order_moments(params, variables, 𝓂, verbose = verbose)[1]),eps(Float64))) + convert(Vector{ℱ.Dual{Z,S,N}},max.(ℒ.diag(calculate_third_order_moments(params, variables, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose)[1]),eps(Float64))) end @@ -3578,9 +3644,26 @@ function calculate_second_order_solution(∇₁::AbstractMatrix{<: Real}, #first C = (M₂.𝐔₂ * ℒ.kron(𝐒₁₋╱𝟏ₑ, 𝐒₁₋╱𝟏ₑ) + M₂.𝐔₂ * M₂.𝛔) * M₂.𝐂₂ droptol!(C,tol) + r1,c1,v1 = findnz(B) + r2,c2,v2 = findnz(C) + r3,c3,v3 = findnz(X) + + coordinates = Tuple{Vector{Int}, Vector{Int}}[] + push!(coordinates,(r1,c1)) + push!(coordinates,(r2,c2)) + push!(coordinates,(r3,c3)) + + values = vcat(v1, v2, v3) + + dimensions = Tuple{Int, Int}[] + push!(dimensions,size(B)) + push!(dimensions,size(C)) + push!(dimensions,size(X)) + + 𝐒₂, solved = solve_sylvester_equation_forward(values, coordinates, dimensions, solver = :gmres, sparse_output = true) # 𝐒₂, solved = solve_sylvester_equation_forward([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], tol = tol) # 𝐒₂, solved = solve_sylvester_equation_AD([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], sparse_output = true) - 𝐒₂, solved = solve_sylvester_equation_forward([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], sparse_output = true) + # 𝐒₂, solved = solve_sylvester_equation_forward([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], sparse_output = true) 𝐒₂ *= M₂.𝐔₂ @@ -3670,9 +3753,27 @@ function calculate_third_order_solution(∇₁::AbstractMatrix{<: Real}, #first C *= M₃.𝐂₃ droptol!(C,tol) + r1,c1,v1 = findnz(B) + r2,c2,v2 = findnz(C) + r3,c3,v3 = findnz(X) + + coordinates = Tuple{Vector{Int}, Vector{Int}}[] + push!(coordinates,(r1,c1)) + push!(coordinates,(r2,c2)) + push!(coordinates,(r3,c3)) + + values = vcat(v1, v2, v3) + + dimensions = Tuple{Int, Int}[] + push!(dimensions,size(B)) + push!(dimensions,size(C)) + push!(dimensions,size(X)) + + + 𝐒₃, solved = solve_sylvester_equation_forward(values, coordinates, dimensions, solver = :gmres, sparse_output = true) # 𝐒₃, solved = solve_sylvester_equation_forward([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], tol = tol) # 𝐒₃, solved = solve_sylvester_equation_AD([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], sparse_output = true) - 𝐒₃, solved = solve_sylvester_equation_forward([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], sparse_output = true) + # 𝐒₃, solved = solve_sylvester_equation_forward([vec(B) ;vec(C) ;vec(X)], dims = [size(B) ;size(C) ;size(X)], sparse_output = true) 𝐒₃ *= M₃.𝐔₃ @@ -4198,37 +4299,152 @@ function solve_sylvester_equation_forward(ABC::SparseVector{Float64, Int64}; elseif length(dims) == 2 B = A' C = reconstruct_sparse_matrix(ABC[lenA + 1 : end], dims[2]) + symm = true end - if solver ∈ [:gmres, :bicgstab] - sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, - (sol,𝐱) -> begin + A = ThreadedSparseArrays.ThreadedSparseMatrixCSC(A) + + if solver ∈ [:gmres, :bicgstab] + function sylvester!(sol,𝐱) 𝐗 = reshape(𝐱, size(C)) sol .= vec(A * 𝐗 * B - 𝐗) return sol - end) + end + + sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) if solver == :gmres 𝐂, info = Krylov.gmres(sylvester, [vec(C);]) elseif solver == :bicgstab 𝐂, info = Krylov.bicgstab(sylvester, [vec(C);]) end - + solved = info.solved + elseif solver == :doubling && symm + iter = 1 + change = 1 + 𝐂 = collect(-C) + 𝐂¹ = collect(-C) + while change > eps() && iter < 100 + 𝐂¹ = A * 𝐂 * A' + 𝐂 + A = A * A + droptol!(A, eps()) + if iter > 10 + change = maximum(abs, 𝐂¹ - 𝐂) + end + 𝐂 = 𝐂¹ + iter += 1 + end + solved = change < eps() elseif solver == :speedmapping soll = speedmapping(collect(-C); m! = (X, x) -> X .= A * x * B - C, stabilize = true) 𝐂 = soll.minimizer - info = soll.converged + solved = soll.converged end - if !info.solved && !(solver == :gmres) - 𝐂, info = Krylov.gmres(sylvester, [vec(C);]) + return sparse_output ? sparse(reshape(𝐂, size(C))) : reshape(𝐂, size(C)), solved # return info on convergence +end + + + + + + +function solve_sylvester_equation_forward(ABC::Vector{Float64}, + coords::Vector{Tuple{Vector{Int}, Vector{Int}}}, + dims::Vector{Tuple{Int,Int}}; + sparse_output::Bool = false, + solver::Symbol = :doubling) + + if length(coords) == 1 + lengthA = length(coords[1][1]) + vA = ABC[1:lengthA] + A = sparse(coords[1]...,vA,dims[1]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + C = reshape(ABC[lengthA+1:end],dims[2]...) + if solver != :doubling + B = A' + end + elseif length(coords) == 3 + lengthA = length(coords[1][1]) + lengthB = length(coords[2][1]) + + vA = ABC[1:lengthA] + vB = ABC[lengthA .+ (1:lengthB)] + vC = ABC[lengthA + lengthB + 1:end] + + A = sparse(coords[1]...,vA,dims[1]...)# |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + B = sparse(coords[2]...,vB,dims[2]...)# |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + C = sparse(coords[3]...,vC,dims[3]...)# |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + else + lengthA = dims[1][1] * dims[1][2] + A = reshape(ABC[1:lengthA],dims[1]...) + C = reshape(ABC[lengthA+1:end],dims[2]...) + if solver != :doubling + B = A' + end end + - return sparse_output ? sparse(reshape(𝐂, size(C))) : reshape(𝐂, size(C)), info.solved # return info on convergence + if solver ∈ [:gmres, :bicgstab] + function sylvester!(sol,𝐱) + 𝐗 = reshape(𝐱, size(C)) + sol .= vec(A * 𝐗 * B - 𝐗) + return sol + end + + sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) + + if solver == :gmres + 𝐂, info = Krylov.gmres(sylvester, [vec(C);]) + elseif solver == :bicgstab + 𝐂, info = Krylov.bicgstab(sylvester, [vec(C);]) + end + solved = info.solved + elseif solver == :doubling + iter = 1 + change = 1 + 𝐂 = -C + 𝐂¹ = -C + while change > eps(Float32) && iter < 100 + 𝐂¹ = A * 𝐂 * A' + 𝐂 + A = A * A + if !(A isa DenseMatrix) + droptol!(A, eps()) + end + if iter > 10 + change = maximum(abs, 𝐂¹ - 𝐂) + end + 𝐂 = 𝐂¹ + iter += 1 + end + solved = change < eps() + elseif solver == :speedmapping + soll = speedmapping(collect(-C); m! = (X, x) -> X .= A * x * B - C, stabilize = true) + + 𝐂 = soll.minimizer + + solved = soll.converged + end + + # if !solved && !(solver == :gmres) + # function sylvester!(sol,𝐱) + # 𝐗 = reshape(𝐱, size(C)) + # sol .= vec(A * 𝐗 * B - 𝐗) + # return sol + # end + + # sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) + + # 𝐂, info = Krylov.gmres(sylvester, [vec(C);]) + # solved = info.solved + # end + + return sparse_output ? sparse(reshape(𝐂, size(C))) : reshape(𝐂, size(C)), solved # return info on convergence end + + function solve_sylvester_equation_forward(ABC::Vector{Float64}; dims::Vector{Tuple{Int,Int}}, sparse_output::Bool = false, @@ -4247,14 +4463,15 @@ function solve_sylvester_equation_forward(ABC::Vector{Float64}; C = reshape(ABC[lenA + 1 : end], dims[2]) end - if solver ∈ [:gmres, :bicgstab] - sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, - (sol,𝐱) -> begin - 𝐗 = reshape(𝐱, size(C)) - sol .= vec(A * 𝐗 * B - 𝐗) - return sol - end) + function sylvester!(sol,𝐱) + 𝐗 = reshape(𝐱, size(C)) + sol .= vec(A * 𝐗 * B - 𝐗) + return sol + end + sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) + + if solver ∈ [:gmres, :bicgstab] if solver == :gmres 𝐂, info = Krylov.gmres(sylvester, [vec(C);]) elseif solver == :bicgstab @@ -4277,6 +4494,49 @@ function solve_sylvester_equation_forward(ABC::Vector{Float64}; end +function solve_sylvester_equation_conditions(ABC::Vector{<: Real}, + coords::Vector{Tuple{Vector{Int}, Vector{Int}}}, + dims::Vector{Tuple{Int,Int}}, + X::AbstractMatrix{<: Real}, + solved::Bool; + sparse_output::Bool = false, + solver::Symbol = :doubling) + + solver = :gmres # ensure the AXB works always + + if length(coords) == 1 + lengthA = length(coords[1][1]) + vA = ABC[1:lengthA] + A = sparse(coords[1]...,vA,dims[1]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + C = reshape(ABC[lengthA+1:end],dims[2]...) + if solver != :doubling + B = A' + end + elseif length(coords) == 3 + lengthA = length(coords[1][1]) + lengthB = length(coords[2][1]) + + vA = ABC[1:lengthA] + vB = ABC[lengthA .+ (1:lengthB)] + vC = ABC[lengthA + lengthB + 1:end] + + A = sparse(coords[1]...,vA,dims[1]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + B = sparse(coords[2]...,vB,dims[2]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + C = sparse(coords[3]...,vC,dims[3]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + else + lengthA = dims[1][1] * dims[1][2] + A = reshape(ABC[1:lengthA],dims[1]...) + C = reshape(ABC[lengthA+1:end],dims[2]...) + if solver != :doubling + B = A' + end + end + + A * X * B - C - X +end + + + function solve_sylvester_equation_conditions(ABC::SparseVector{<: Real, Int64}, X::AbstractMatrix{<: Real}, solved::Bool; @@ -4529,11 +4789,11 @@ function calculate_second_order_moments( kron_s_e = ℒ.kron(s_in_s⁺, e_in_s⁺) # first order - s_to_y₁ = 𝐒₁[:, 1:𝓂.timings.nPast_not_future_and_mixed] - e_to_y₁ = 𝐒₁[:, (𝓂.timings.nPast_not_future_and_mixed + 1):end] + s_to_y₁ = 𝐒₁[:, 1:nˢ] + e_to_y₁ = 𝐒₁[:, (nˢ + 1):end] - s_to_s₁ = 𝐒₁[iˢ, 1:𝓂.timings.nPast_not_future_and_mixed] - e_to_s₁ = 𝐒₁[iˢ, (𝓂.timings.nPast_not_future_and_mixed + 1):end] + s_to_s₁ = 𝐒₁[iˢ, 1:nˢ] + e_to_s₁ = 𝐒₁[iˢ, (nˢ + 1):end] # second order @@ -4586,7 +4846,16 @@ function calculate_second_order_moments( C = ê_to_ŝ₂ * Γ₂ * ê_to_ŝ₂' - Σᶻ₂, info = solve_sylvester_equation_AD([vec(ŝ_to_ŝ₂); vec(-C)], dims = [size(ŝ_to_ŝ₂) ;size(C)]) + coordinates = Tuple{Vector{Int}, Vector{Int}}[] + + dimensions = Tuple{Int, Int}[] + push!(dimensions,size(ŝ_to_ŝ₂)) + push!(dimensions,size(C)) + + values = vcat(vec(ŝ_to_ŝ₂), vec(collect(-C))) + + Σᶻ₂, info = solve_sylvester_equation_AD(values, coordinates, dimensions, solver = :doubling) + # Σᶻ₂, info = solve_sylvester_equation_AD([vec(ŝ_to_ŝ₂); vec(-C)], dims = [size(ŝ_to_ŝ₂) ;size(C)])#, solver = :doubling) # Σᶻ₂, info = solve_sylvester_equation_forward([vec(ŝ_to_ŝ₂); vec(-C)], dims = [size(ŝ_to_ŝ₂) ;size(C)]) Σʸ₂ = ŝ_to_y₂ * Σᶻ₂ * ŝ_to_y₂' + ê_to_y₂ * Γ₂ * ê_to_y₂' @@ -4608,10 +4877,11 @@ function calculate_third_order_moments(parameters::Vector{T}, autocorrelation::Bool = false, autocorrelation_periods::U = 1:5, verbose::Bool = false, + dependencies_tol::AbstractFloat = 1e-12, tol::AbstractFloat = eps()) where {U, T <: Real} Σʸ₂, Σᶻ₂, μʸ₂, Δμˢ₂, autocorr_tmp, ŝ_to_ŝ₂, ŝ_to_y₂, Σʸ₁, Σᶻ₁, SS_and_pars, 𝐒₁, ∇₁, 𝐒₂, ∇₂ = calculate_second_order_moments(parameters, 𝓂, verbose = verbose) - + if !covariance && !autocorrelation return μʸ₂, Δμˢ₂, Σʸ₁, Σᶻ₁, SS_and_pars, 𝐒₁, ∇₁, 𝐒₂, ∇₂ end @@ -4622,7 +4892,7 @@ function calculate_third_order_moments(parameters::Vector{T}, 𝓂.solution.perturbation.second_order_auxilliary_matrices, 𝓂.solution.perturbation.third_order_auxilliary_matrices; T = 𝓂.timings, tol = tol) - orders = determine_efficient_order(∇₁, 𝓂.timings, observables) + orders = determine_efficient_order(𝐒₁, 𝓂.timings, observables, tol = dependencies_tol) nᵉ = 𝓂.timings.nExo @@ -4642,7 +4912,6 @@ function calculate_third_order_moments(parameters::Vector{T}, e⁴ = quadrup * E_e⁴ - # precalc third order sextup = multiplicate(nᵉ, 6) E_e⁶ = zeros(nᵉ * (nᵉ + 1)÷2 * (nᵉ + 2)÷3 * (nᵉ + 3)÷4 * (nᵉ + 4)÷5 * (nᵉ + 5)÷6) @@ -4663,6 +4932,7 @@ function calculate_third_order_moments(parameters::Vector{T}, autocorr = zeros(T, size(Σʸ₂,1), length(autocorrelation_periods)) end + # Threads.@threads for ords in orders for ords in orders variance_observable, dependencies_all_vars = ords @@ -4692,6 +4962,10 @@ function calculate_third_order_moments(parameters::Vector{T}, Δ̂μˢ₂ = Δμˢ₂[dependencies_in_states_idx] + s_in_s⁺ = BitVector(vcat(𝓂.timings.past_not_future_and_mixed .∈ (dependencies,), zeros(Bool, nᵉ + 1))) + e_in_s⁺ = BitVector(vcat(zeros(Bool, 𝓂.timings.nPast_not_future_and_mixed + 1), ones(Bool, nᵉ))) + v_in_s⁺ = BitVector(vcat(zeros(Bool, 𝓂.timings.nPast_not_future_and_mixed), 1, zeros(Bool, nᵉ))) + # precalc second order ## mean I_plus_s_s = sparse(reshape(ℒ.kron(vec(ℒ.I(nˢ)), ℒ.I(nˢ)), nˢ^2, nˢ^2) + ℒ.I) @@ -4701,16 +4975,6 @@ function calculate_third_order_moments(parameters::Vector{T}, ss_s = sparse(reshape(ℒ.kron(vec(ℒ.I(nˢ^2)), ℒ.I(nˢ)), nˢ^3, nˢ^3)) s_s = sparse(reshape(ℒ.kron(vec(ℒ.I(nˢ)), ℒ.I(nˢ)), nˢ^2, nˢ^2)) - # second order - s_in_s⁺ = BitVector(vcat(𝓂.timings.past_not_future_and_mixed .∈ (dependencies,), zeros(Bool, nᵉ + 1))) - e_in_s⁺ = BitVector(vcat(zeros(Bool, nˢ + 1), ones(Bool, nᵉ))) - v_in_s⁺ = BitVector(vcat(zeros(Bool, nˢ), 1, zeros(Bool, nᵉ))) - - kron_s_s = ℒ.kron(s_in_s⁺, s_in_s⁺) - kron_e_e = ℒ.kron(e_in_s⁺, e_in_s⁺) - kron_v_v = ℒ.kron(v_in_s⁺, v_in_s⁺) - kron_s_e = ℒ.kron(s_in_s⁺, e_in_s⁺) - # first order s_to_y₁ = 𝐒₁[obs_in_y,:][:,dependencies_in_states_idx] e_to_y₁ = 𝐒₁[obs_in_y,:][:, (𝓂.timings.nPast_not_future_and_mixed + 1):end] @@ -4718,8 +4982,12 @@ function calculate_third_order_moments(parameters::Vector{T}, s_to_s₁ = 𝐒₁[iˢ, dependencies_in_states_idx] e_to_s₁ = 𝐒₁[iˢ, (𝓂.timings.nPast_not_future_and_mixed + 1):end] - # second order + kron_s_s = ℒ.kron(s_in_s⁺, s_in_s⁺) + kron_e_e = ℒ.kron(e_in_s⁺, e_in_s⁺) + kron_v_v = ℒ.kron(v_in_s⁺, v_in_s⁺) + kron_s_e = ℒ.kron(s_in_s⁺, e_in_s⁺) + s_s_to_y₂ = 𝐒₂[obs_in_y,:][:, kron_s_s] e_e_to_y₂ = 𝐒₂[obs_in_y,:][:, kron_e_e] s_e_to_y₂ = 𝐒₂[obs_in_y,:][:, kron_s_e] @@ -4781,7 +5049,6 @@ function calculate_third_order_moments(parameters::Vector{T}, e_v_v_to_s₃ * ℒ.I(nᵉ) / 2) * e_to_s₁' ), nˢ, nˢ) - Γ₃ = [ ℒ.I(nᵉ) spzeros(nᵉ, nᵉ^2 + nᵉ * nˢ) ℒ.kron(Δ̂μˢ₂', ℒ.I(nᵉ)) ℒ.kron(vec(Σ̂ᶻ₁)', ℒ.I(nᵉ)) spzeros(nᵉ, nˢ * nᵉ^2) reshape(e⁴, nᵉ, nᵉ^3) spzeros(nᵉ^2, nᵉ) reshape(e⁴, nᵉ^2, nᵉ^2) - vec(ℒ.I(nᵉ)) * vec(ℒ.I(nᵉ))' spzeros(nᵉ^2, 2*nˢ*nᵉ + nˢ^2*nᵉ + nˢ*nᵉ^2 + nᵉ^3) spzeros(nˢ * nᵉ, nᵉ + nᵉ^2) ℒ.kron(Σ̂ᶻ₁, ℒ.I(nᵉ)) spzeros(nˢ * nᵉ, nˢ*nᵉ + nˢ^2*nᵉ + nˢ*nᵉ^2 + nᵉ^3) @@ -4794,82 +5061,30 @@ function calculate_third_order_moments(parameters::Vector{T}, Eᴸᶻ = [ spzeros(nᵉ + nᵉ^2 + 2*nᵉ*nˢ + nᵉ*nˢ^2, 3*nˢ + 2*nˢ^2 +nˢ^3) ℒ.kron(Σ̂ᶻ₁,vec(ℒ.I(nᵉ))) zeros(nˢ*nᵉ^2, nˢ + nˢ^2) ℒ.kron(μˢ₃δμˢ₁',vec(ℒ.I(nᵉ))) ℒ.kron(reshape(ss_s * vec(Σ̂ᶻ₂[nˢ + 1:2*nˢ,2 * nˢ + 1 : end] + Δ̂μˢ₂ * vec(Σ̂ᶻ₁)'), nˢ, nˢ^2), vec(ℒ.I(nᵉ))) ℒ.kron(reshape(Σ̂ᶻ₂[2 * nˢ + 1 : end, 2 * nˢ + 1 : end] + vec(Σ̂ᶻ₁) * vec(Σ̂ᶻ₁)', nˢ, nˢ^3), vec(ℒ.I(nᵉ))) spzeros(nᵉ^3, 3*nˢ + 2*nˢ^2 +nˢ^3)] - + + droptol!(ŝ_to_ŝ₃, eps()) + droptol!(ê_to_ŝ₃, eps()) + droptol!(Eᴸᶻ, eps()) + droptol!(Γ₃, eps()) + A = ê_to_ŝ₃ * Eᴸᶻ * ŝ_to_ŝ₃' + droptol!(A, eps()) C = ê_to_ŝ₃ * Γ₃ * ê_to_ŝ₃' + A + A' + droptol!(C, eps()) + + r1,c1,v1 = findnz(ŝ_to_ŝ₃) - Σᶻ₃, info = solve_sylvester_equation_AD([vec(ŝ_to_ŝ₃); vec(-C)], dims = [size(ŝ_to_ŝ₃) ;size(C)]) - # Σᶻ₃, info = solve_sylvester_equation_forward([vec(ŝ_to_ŝ₃); vec(-C)], dims = [size(ŝ_to_ŝ₃) ;size(C)]) + coordinates = Tuple{Vector{Int}, Vector{Int}}[] + push!(coordinates,(r1,c1)) - # # if size(initial_guess³) == (0,0) - # # initial_guess³ = collect(C) - # # end - - # if length(C) < 1e7 - # function sylvester!(sol,𝐱) - # 𝐗 = reshape(𝐱, size(C)) - # sol .= vec(ŝ_to_ŝ₃ * 𝐗 * ŝ_to_ŝ₃' - 𝐗) - # return sol - # end - - # sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) - - # Σ̂ᶻ₃, info = Krylov.gmres(sylvester, sparsevec(collect(-C)), atol = eps()) - - # if !info.solved - # Σ̂ᶻ₃, info = Krylov.bicgstab(sylvester, sparsevec(collect(-C)), atol = eps()) - # end - - # Σᶻ₃ = reshape(Σ̂ᶻ₃, size(C)) - # else - # soll = speedmapping(collect(C); m! = (Σᶻ₃, Σ̂ᶻ₃) -> Σᶻ₃ .= ŝ_to_ŝ₃ * Σ̂ᶻ₃ * ŝ_to_ŝ₃' + C, - # # time_limit = 200, - # stabilize = true) - - # Σᶻ₃ = soll.minimizer - - # if !soll.converged - # return Inf - # end - # end - # id_z1_xf = (1:nˢ) - # id_z2_xs = id_z1_xf[end] .+ (1:nˢ) - # id_z3_xf_xf = id_z2_xs[end] .+ (1:nˢ*nˢ) - # id_z4_xrd = id_z3_xf_xf[end] .+ (1:nˢ) - # id_z5_xf_xs = id_z4_xrd[end] .+ (1:nˢ*nˢ) - # id_z6_xf_xf_xf= id_z5_xf_xs[end] .+ (1:nˢ*nˢ*nˢ) - - - # Σᶻ₃[id_z1_xf , vcat(id_z2_xs, id_z3_xf_xf)] .= 0 - # Σᶻ₃[id_z2_xs , vcat(id_z1_xf, id_z4_xrd, id_z5_xf_xs, id_z6_xf_xf_xf)] .= 0 #zeros(nˢ,nˢ^3); - # Σᶻ₃[id_z3_xf_xf , id_z1_xf] .= 0 #zeros(nˢ^2,nˢ); - # Σᶻ₃[id_z3_xf_xf , id_z4_xrd] .= 0 #zeros(nˢ^2,nˢ); - # Σᶻ₃[id_z3_xf_xf , id_z5_xf_xs] .= 0 #zeros(nˢ^2,nˢ^2); - # Σᶻ₃[id_z3_xf_xf , id_z6_xf_xf_xf] .= 0 #zeros(nˢ^2,nˢ^3); - # Σᶻ₃[id_z4_xrd , id_z2_xs] .= 0 #zeros(nˢ,nˢ); - # Σᶻ₃[id_z4_xrd , id_z3_xf_xf] .= 0 #zeros(nˢ,nˢ^2); - # Σᶻ₃[id_z5_xf_xs , id_z2_xs] .= 0 #zeros(nˢ^2,nˢ); - # Σᶻ₃[id_z5_xf_xs , id_z3_xf_xf] .= 0 #zeros(nˢ^2,nˢ^2); - # Σᶻ₃[id_z6_xf_xf_xf , id_z2_xs] .= 0 #zeros(nˢ^3,nˢ); - # Σᶻ₃[id_z6_xf_xf_xf , id_z3_xf_xf] .= 0 #zeros(nˢ^3,nˢ^2); - - # Σᶻ₃[id_z1_xf , id_z2_xs] .= 0 #zeros(nˢ,nˢ); - # Σᶻ₃[id_z1_xf , id_z3_xf_xf] .= 0 #zeros(nˢ,nˢ^2); - # Σᶻ₃[id_z2_xs , id_z1_xf] .= 0 #zeros(nˢ,nˢ); - # Σᶻ₃[id_z2_xs , id_z4_xrd] .= 0 #zeros(nˢ,nˢ); - # Σᶻ₃[id_z2_xs , id_z5_xf_xs] .= 0 #zeros(nˢ,nˢ^2); - # Σᶻ₃[id_z2_xs , id_z6_xf_xf_xf] .= 0 #zeros(nˢ,nˢ^3); - # Σᶻ₃[id_z3_xf_xf , id_z1_xf] .= 0 #zeros(nˢ^2,nˢ); - # Σᶻ₃[id_z3_xf_xf , id_z4_xrd] .= 0 #zeros(nˢ^2,nˢ); - # Σᶻ₃[id_z3_xf_xf , id_z5_xf_xs] .= 0 #zeros(nˢ^2,nˢ^2); - # Σᶻ₃[id_z3_xf_xf , id_z6_xf_xf_xf] .= 0 #zeros(nˢ^2,nˢ^3); - # Σᶻ₃[id_z4_xrd , id_z2_xs] .= 0 #zeros(nˢ,nˢ); - # Σᶻ₃[id_z4_xrd , id_z3_xf_xf] .= 0 #zeros(nˢ,nˢ^2); - # Σᶻ₃[id_z5_xf_xs , id_z2_xs] .= 0 #zeros(nˢ^2,nˢ); - # Σᶻ₃[id_z5_xf_xs , id_z3_xf_xf] .= 0 #zeros(nˢ^2,nˢ^2); - # Σᶻ₃[id_z6_xf_xf_xf , id_z2_xs] .= 0 #zeros(nˢ^3,nˢ); - # Σᶻ₃[id_z6_xf_xf_xf , id_z3_xf_xf] .= 0 #zeros(nˢ^3,nˢ^2); + dimensions = Tuple{Int, Int}[] + push!(dimensions,size(ŝ_to_ŝ₃)) + push!(dimensions,size(C)) + + values = vcat(v1, vec(collect(-C))) + + Σᶻ₃, info = solve_sylvester_equation_AD(values, coordinates, dimensions, solver = :doubling) Σʸ₃tmp = ŝ_to_y₃ * Σᶻ₃ * ŝ_to_y₃' + ê_to_y₃ * Γ₃ * ê_to_y₃' + ê_to_y₃ * Eᴸᶻ * ŝ_to_y₃' + ŝ_to_y₃ * Eᴸᶻ' * ê_to_y₃' @@ -5118,79 +5333,79 @@ end -@setup_workload begin - # Putting some things in `setup` can reduce the size of the - # precompile file and potentially make loading faster. - @model FS2000 precompile = true begin - dA[0] = exp(gam + z_e_a * e_a[x]) - log(m[0]) = (1 - rho) * log(mst) + rho * log(m[-1]) + z_e_m * e_m[x] - - P[0] / (c[1] * P[1] * m[0]) + bet * P[1] * (alp * exp( - alp * (gam + log(e[1]))) * k[0] ^ (alp - 1) * n[1] ^ (1 - alp) + (1 - del) * exp( - (gam + log(e[1])))) / (c[2] * P[2] * m[1])=0 - W[0] = l[0] / n[0] - - (psi / (1 - psi)) * (c[0] * P[0] / (1 - n[0])) + l[0] / n[0] = 0 - R[0] = P[0] * (1 - alp) * exp( - alp * (gam + z_e_a * e_a[x])) * k[-1] ^ alp * n[0] ^ ( - alp) / W[0] - 1 / (c[0] * P[0]) - bet * P[0] * (1 - alp) * exp( - alp * (gam + z_e_a * e_a[x])) * k[-1] ^ alp * n[0] ^ (1 - alp) / (m[0] * l[0] * c[1] * P[1]) = 0 - c[0] + k[0] = exp( - alp * (gam + z_e_a * e_a[x])) * k[-1] ^ alp * n[0] ^ (1 - alp) + (1 - del) * exp( - (gam + z_e_a * e_a[x])) * k[-1] - P[0] * c[0] = m[0] - m[0] - 1 + d[0] = l[0] - e[0] = exp(z_e_a * e_a[x]) - y[0] = k[-1] ^ alp * n[0] ^ (1 - alp) * exp( - alp * (gam + z_e_a * e_a[x])) - gy_obs[0] = dA[0] * y[0] / y[-1] - gp_obs[0] = (P[0] / P[-1]) * m[-1] / dA[0] - log_gy_obs[0] = log(gy_obs[0]) - log_gp_obs[0] = log(gp_obs[0]) - end - - @parameters FS2000 silent = true precompile = true begin - alp = 0.356 - bet = 0.993 - gam = 0.0085 - mst = 1.0002 - rho = 0.129 - psi = 0.65 - del = 0.01 - z_e_a = 0.035449 - z_e_m = 0.008862 - end +# @setup_workload begin +# # Putting some things in `setup` can reduce the size of the +# # precompile file and potentially make loading faster. +# @model FS2000 precompile = true begin +# dA[0] = exp(gam + z_e_a * e_a[x]) +# log(m[0]) = (1 - rho) * log(mst) + rho * log(m[-1]) + z_e_m * e_m[x] +# - P[0] / (c[1] * P[1] * m[0]) + bet * P[1] * (alp * exp( - alp * (gam + log(e[1]))) * k[0] ^ (alp - 1) * n[1] ^ (1 - alp) + (1 - del) * exp( - (gam + log(e[1])))) / (c[2] * P[2] * m[1])=0 +# W[0] = l[0] / n[0] +# - (psi / (1 - psi)) * (c[0] * P[0] / (1 - n[0])) + l[0] / n[0] = 0 +# R[0] = P[0] * (1 - alp) * exp( - alp * (gam + z_e_a * e_a[x])) * k[-1] ^ alp * n[0] ^ ( - alp) / W[0] +# 1 / (c[0] * P[0]) - bet * P[0] * (1 - alp) * exp( - alp * (gam + z_e_a * e_a[x])) * k[-1] ^ alp * n[0] ^ (1 - alp) / (m[0] * l[0] * c[1] * P[1]) = 0 +# c[0] + k[0] = exp( - alp * (gam + z_e_a * e_a[x])) * k[-1] ^ alp * n[0] ^ (1 - alp) + (1 - del) * exp( - (gam + z_e_a * e_a[x])) * k[-1] +# P[0] * c[0] = m[0] +# m[0] - 1 + d[0] = l[0] +# e[0] = exp(z_e_a * e_a[x]) +# y[0] = k[-1] ^ alp * n[0] ^ (1 - alp) * exp( - alp * (gam + z_e_a * e_a[x])) +# gy_obs[0] = dA[0] * y[0] / y[-1] +# gp_obs[0] = (P[0] / P[-1]) * m[-1] / dA[0] +# log_gy_obs[0] = log(gy_obs[0]) +# log_gp_obs[0] = log(gp_obs[0]) +# end + +# @parameters FS2000 silent = true precompile = true begin +# alp = 0.356 +# bet = 0.993 +# gam = 0.0085 +# mst = 1.0002 +# rho = 0.129 +# psi = 0.65 +# del = 0.01 +# z_e_a = 0.035449 +# z_e_m = 0.008862 +# end - ENV["GKSwstype"] = "nul" - - @compile_workload begin - # all calls in this block will be precompiled, regardless of whether - # they belong to your package or not (on Julia 1.8 and higher) - @model RBC precompile = true begin - 1 / c[0] = (0.95 / c[1]) * (α * exp(z[1]) * k[0]^(α - 1) + (1 - δ)) - c[0] + k[0] = (1 - δ) * k[-1] + exp(z[0]) * k[-1]^α - z[0] = 0.2 * z[-1] + 0.01 * eps_z[x] - end - - @parameters RBC silent = true precompile = true begin - δ = 0.02 - α = 0.5 - end - - get_SS(FS2000) - get_SS(FS2000, parameters = :alp => 0.36) - get_solution(FS2000) - get_solution(FS2000, parameters = :alp => 0.35) - get_standard_deviation(FS2000) - get_correlation(FS2000) - get_autocorrelation(FS2000) - get_variance_decomposition(FS2000) - get_conditional_variance_decomposition(FS2000) - get_irf(FS2000) - - data = simulate(FS2000)[:,:,1] - observables = [:c,:k] - calculate_kalman_filter_loglikelihood(FS2000, data(observables), observables) - get_mean(FS2000, silent = true) - get_SSS(FS2000, silent = true) - # get_SSS(FS2000, algorithm = :third_order, silent = true) - - # import Plots, StatsPlots - # plot_irf(FS2000) - # plot_solution(FS2000,:k) # fix warning when there is no sensitivity and all values are the same. triggers: no strict ticks found... - # plot_conditional_variance_decomposition(FS2000) - end -end +# ENV["GKSwstype"] = "nul" + +# @compile_workload begin +# # all calls in this block will be precompiled, regardless of whether +# # they belong to your package or not (on Julia 1.8 and higher) +# @model RBC precompile = true begin +# 1 / c[0] = (0.95 / c[1]) * (α * exp(z[1]) * k[0]^(α - 1) + (1 - δ)) +# c[0] + k[0] = (1 - δ) * k[-1] + exp(z[0]) * k[-1]^α +# z[0] = 0.2 * z[-1] + 0.01 * eps_z[x] +# end + +# @parameters RBC silent = true precompile = true begin +# δ = 0.02 +# α = 0.5 +# end + +# get_SS(FS2000) +# get_SS(FS2000, parameters = :alp => 0.36) +# get_solution(FS2000) +# get_solution(FS2000, parameters = :alp => 0.35) +# get_standard_deviation(FS2000) +# get_correlation(FS2000) +# get_autocorrelation(FS2000) +# get_variance_decomposition(FS2000) +# get_conditional_variance_decomposition(FS2000) +# get_irf(FS2000) + +# data = simulate(FS2000)[:,:,1] +# observables = [:c,:k] +# calculate_kalman_filter_loglikelihood(FS2000, data(observables), observables) +# get_mean(FS2000, silent = true) +# get_SSS(FS2000, silent = true) +# # get_SSS(FS2000, algorithm = :third_order, silent = true) + +# # import Plots, StatsPlots +# # plot_irf(FS2000) +# # plot_solution(FS2000,:k) # fix warning when there is no sensitivity and all values are the same. triggers: no strict ticks found... +# # plot_conditional_variance_decomposition(FS2000) +# end +# end end diff --git a/src/get_functions.jl b/src/get_functions.jl index 26a9bc64..e39144fa 100644 --- a/src/get_functions.jl +++ b/src/get_functions.jl @@ -1946,6 +1946,7 @@ function get_moments(𝓂::ℳ; derivatives::Bool = true, parameter_derivatives::Union{Symbol_input,String_input} = :all, algorithm::Symbol = :first_order, + dependencies_tol::AbstractFloat = 1e-12, verbose::Bool = false, silent::Bool = true)#limit output by selecting pars and vars like for plots and irfs!? @@ -2056,7 +2057,7 @@ function get_moments(𝓂::ℳ; elseif algorithm == :pruned_third_order covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, verbose = verbose) - dvariance = ℱ.jacobian(x -> covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, verbose = verbose), 𝓂.parameter_values[param_idx]) + dvariance = ℱ.jacobian(x -> covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose), 𝓂.parameter_values[param_idx]) if mean var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) @@ -2087,7 +2088,7 @@ function get_moments(𝓂::ℳ; if algorithm == :pruned_second_order dst_dev = ℱ.jacobian(x -> sqrt.(covariance_parameter_derivatives_second_order(x, param_idx, 𝓂, verbose = verbose)), 𝓂.parameter_values[param_idx]) elseif algorithm == :pruned_third_order - dst_dev = ℱ.jacobian(x -> sqrt.(covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, verbose = verbose)), 𝓂.parameter_values[param_idx]) + dst_dev = ℱ.jacobian(x -> sqrt.(covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose)), 𝓂.parameter_values[param_idx]) else dst_dev = ℱ.jacobian(x -> sqrt.(covariance_parameter_derivatives(x, param_idx, 𝓂, verbose = verbose)), 𝓂.parameter_values[param_idx]) end @@ -2115,7 +2116,7 @@ function get_moments(𝓂::ℳ; elseif algorithm == :pruned_third_order covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, verbose = verbose) - dst_dev = ℱ.jacobian(x -> sqrt.(covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, verbose = verbose)), 𝓂.parameter_values[param_idx]) + dst_dev = ℱ.jacobian(x -> sqrt.(covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose)), 𝓂.parameter_values[param_idx]) if mean var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) @@ -2185,7 +2186,7 @@ function get_moments(𝓂::ℳ; var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, verbose = verbose) + covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose) if mean var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) end @@ -2209,7 +2210,7 @@ function get_moments(𝓂::ℳ; var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, verbose = verbose) + covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose) if mean var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) end @@ -2226,7 +2227,7 @@ function get_moments(𝓂::ℳ; var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, :full_covar, 𝓂, verbose = verbose) + covar_dcmp, state_μ, _ = calculate_third_order_moments(𝓂.parameter_values, :full_covar, 𝓂, dependencies_tol = dependencies_tol, verbose = verbose) if mean var_means = KeyedArray(state_μ[var_idx]; Variables = axis1) end