diff --git a/src/uncertainty.jl b/src/uncertainty.jl index 3dce4d28..78ad11a4 100644 --- a/src/uncertainty.jl +++ b/src/uncertainty.jl @@ -33,51 +33,6 @@ SS(Smets_Wouters_2007, parameters = estimated_pars .=> estimated_par_vals, deriv # find optimal loss coefficients # Problem definition, find the loss coefficients such that the derivatives of the Taylor rule coefficients wrt the loss are 0 -# lbs = [0,0] -# ubs = [1e6, 1e6] #, 1e6] -# initial_values = [.3 ,.3] # ,0.2347] - -# var = get_variance(Smets_Wouters_2007, derivatives = false) - - - -# Define the given vector -# SS(Smets_Wouters_2007, parameters = :crdy => 0, derivatives = false) - -# loss_function_weights = [1, 1, .1] - -# lbs = [eps(),eps(),eps()] #,eps()] -# ubs = [1-eps(), 1e6, 1e6] #, 1e6] -# initial_values = [0.8762 ,1.488 ,0.0593] # ,0.2347] -# regularisation = [1e-7,1e-5,1e-5] #,1e-5] - -# optimal_taylor_coefficients = [Dict(get_parameters(Smets_Wouters_2007, values = true))[i] for i in ["crpi", "cry", "crr"]] - -# out = get_statistics(Smets_Wouters_2007, -# optimal_taylor_coefficients, -# parameters = [:crr, :crpi, :cry],#, :crdy], -# variance = [:ygap, :pinfobs, :drobs], -# algorithm = :first_order, -# verbose = true) - - -# out[:variance]' * loss_function_weights + abs2.(initial_values)' * regularisation - - - - - -# function calculate_loss(loss_function_weights,regularisation; verbose = false) -# out = get_statistics(Smets_Wouters_2007, -# [0.824085387718046, 1.9780022172135707, 4.095695818850862], -# # [0.935445005053725, 1.0500350793944067, 0.14728806935911198, 0.05076653598648485, 0], -# parameters = [:crr, :crpi, :cry, :crdy], -# variance = [:ygap, :pinfobs, :drobs], -# algorithm = :first_order, -# verbose = verbose) - -# return out[:variance]' * loss_function_weights + abs2.([0.824085387718046, 1.9780022172135707, 4.095695818850862,0])' * regularisation -# end optimal_taylor_coefficients = [Dict(get_parameters(Smets_Wouters_2007, values = true))[i] for i in ["crpi", "cry", "crr"]] @@ -279,6 +234,156 @@ for (nm,vl) in zip(stds,std_vals) end + + +## Analysis of other sources of uncertainty +include("../models/Smets_Wouters_2007_ext.jl") + +model = Smets_Wouters_2007_ext + + +# EA tighter priors (no crdy) +estimated_par_vals = [0.5155251475194788, 0.07660166839374086, 0.42934249231657745, 1.221167691146145, 0.7156091225215181, 0.13071182824630584, 0.5072333270577154, 0.9771677130980795, 0.986794686927924, 0.9822502018161883, 0.09286109236460689, 0.4654804216926021, 0.9370552043932711, 0.47725222696887853, 0.44661470121418184, 0.4303294544434745, 3.6306838940222996, 0.3762913949270054, 0.5439881753546603, 0.7489991629811795, 1.367786474803364, 0.8055157457796492, 0.40545058009366347, 0.10369929978953055, 0.7253632750136628, 0.9035647768098533, 2.7581458138927886, 0.6340306336303874, 0.0275348491078362, 0.43733563413301674, 0.34302913866206625, -0.05823832790219527, 0.29395331895770577, 0.2747958016561462, 0.3114891537064354, 0.030983938890070825, 4.7228912586862375, 0.1908504262397911, 3.7626464596678604, 18.34766525498524] + +estimated_pars = [:z_ea, :z_eb, :z_eg, :z_eqs, :z_em, :z_epinf, :z_ew, :crhoa, :crhob, :crhog, :crhoqs, :crhoms, :crhopinf, :crhow, :cmap, :cmaw, :csadjcost, :csigma, :chabb, :cprobw, :csigl, :cprobp, :cindw, :cindp, :czcap, :cfc, :crpi, :crr, :cry, :constepinf, :constebeta, :constelab, :ctrend, :cgy, :calfa, :ctou, :clandaw, :cg, :curvp, :curvw] + +SS(model, parameters = :crdy => 0, derivatives = false) + +SS(model, parameters = estimated_pars .=> estimated_par_vals, derivatives = false) + + +optimal_taylor_coefficients = [Dict(get_parameters(model, values = true))[i] for i in ["crpi", "cry", "crr"]] + +taylor_coef_stds = [0.2739, 0.0113, 0.0467] + + +function calculate_cb_loss(taylor_parameter_inputs,p; verbose = false) + loss_function_weights, regularisation, model = p + + out = get_statistics(model, + taylor_parameter_inputs, + parameters = [:crpi, :cry, :crr],#, :crdy], + variance = [:pinfobs, :ygap, :drobs], + algorithm = :first_order, + verbose = verbose) + + return out[:variance]' * loss_function_weights + sum(abs2, taylor_parameter_inputs) * regularisation +end + +function find_weights(loss_function_weights_regularisation, p) + optimal_taylor_coefficients, model = p + loss_function_weights = loss_function_weights_regularisation[1:2] + regularisation = 1 / loss_function_weights_regularisation[3] + sum(abs2, ForwardDiff.gradient(x->calculate_cb_loss(x, (vcat(1,loss_function_weights), regularisation, model)), optimal_taylor_coefficients)) +end + +lbs = fill(0.0, 3) +ubs = fill(1e6, 3) + +f = OptimizationFunction((x,p)-> find_weights(x,p), AutoForwardDiff()) + +prob = OptimizationProblem(f, fill(0.5, 3), (optimal_taylor_coefficients, model), ub = ubs, lb = lbs) + +sol = solve(prob, NLopt.LD_LBFGS(), maxiters = 10000) + + + + +loss_function_weights = vcat(1, copy(sol.u[1:2])) + +lbs = [eps(),eps(),eps()] #,eps()] +ubs = [1e6, 1e6, 1] #, 1e6] +# initial_values = [0.8762 ,1.488 ,0.0593] # ,0.2347] +regularisation = 1 / copy(sol.u[3]) #,1e-5] + +f = OptimizationFunction(calculate_cb_loss, AutoZygote()) + +prob = OptimizationProblem(f, optimal_taylor_coefficients, (loss_function_weights, regularisation, model), ub = ubs, lb = lbs) + +sol = solve(prob, NLopt.LD_LBFGS(), maxiters = 10000) # this seems to achieve best results + + + +# std cprobw: 0.08 +# std cprobp: 0.0321 + +stds = [:σ_pinf, :σ_cprobp, :σ_cprobw] +std_vals = [0.015, 0.0321, 0.08] + +stdderivs = get_std(model)#, parameters = [:crr, :crpi, :cry, :crdy] .=> vcat(sol.u,0)) +stdderivs([:ygap, :pinfobs, :drobs, :robs],vcat(stds,[:crr, :crpi, :cry])) + + + +k_range = .45:.025:.55 # [.5] # +n_σ_range = 10 +coeff = zeros(length(k_range), length(stds), n_σ_range, 7); + +ii = 1 +for (nm,vl) in zip(stds,std_vals) + for (l,k) in enumerate(k_range) + σ_range = range(0 * vl, .05 * vl, length = n_σ_range) + + combined_loss_function_weights = vcat(1,k * loss_function_weights_upper[1:2] + (1-k) * loss_function_weights_lower[1:2]) + + prob = OptimizationProblem(f, optimal_taylor_coefficients, (combined_loss_function_weights, regularisation, model), ub = ubs, lb = lbs) + + for (ll,σ) in enumerate(σ_range) + SS(model, parameters = nm => σ, derivatives = false) + + # soll = solve(prob, NLopt.LD_LBFGS(), maxiters = 10000) # this seems to achieve best results + + soll = solve(prob, NLopt.LN_NELDERMEAD(), maxiters = 10000) # this seems to achieve best results + + coeff[l,ii,ll,:] = vcat(combined_loss_function_weights,σ,soll.u) + + println("$nm $σ $(soll.objective)") + end + + + SS(model, parameters = nm => 0, derivatives = false) + + # display(p) + end + + plots = [] + push!(plots, surface(vec(coeff[:,ii,:,3]), vec(coeff[:,ii,:,4]), vec(coeff[:,ii,:,7]), label = "", xlabel = "Loss weight: Δr", ylabel = "$nm", zlabel = "crr", colorbar=false)) + push!(plots, surface(vec(coeff[:,ii,:,3]), vec(coeff[:,ii,:,4]), vec((1 .- coeff[:,ii,:,7]) .* coeff[:,ii,:,5]), label = "", xlabel = "Loss weight: Δr", ylabel = "$nm", zlabel = "(1 - crr) * crpi", colorbar=false)) + push!(plots, surface(vec(coeff[:,ii,:,3]), vec(coeff[:,ii,:,4]), vec((1 .- coeff[:,ii,:,7]) .* coeff[:,ii,:,6]), label = "", xlabel = "Loss weight: Δr", ylabel = "$nm", zlabel = "(1 - crr) * cry", colorbar=false)) + + p = plot(plots...) # , plot_title = string(nm)) + savefig(p,"OSR_$(nm)_surface_ext.png") + + # plots = [] + # push!(plots, plot(vec(coeff[:,ii,:,4]), vec(coeff[:,ii,:,7]), label = "", xlabel = "$nm", ylabel = "crr", colorbar=false)) + # push!(plots, plot(vec(coeff[:,ii,:,4]), vec((1 .- coeff[:,ii,:,7]) .* coeff[:,ii,:,5]), label = "", xlabel = "$nm", ylabel = "(1 - crr) * crpi", colorbar=false)) + # push!(plots, plot(vec(coeff[:,ii,:,4]), vec((1 .- coeff[:,ii,:,7]) .* coeff[:,ii,:,6]), label = "", xlabel = "$nm", ylabel = "(1 - crr) * cry", colorbar=false)) + + # p = plot(plots...) # , plot_title = string(nm)) + # savefig(p,"OSR_$(nm)_ext.png") + + ii += 1 +end + + +# look at shock decomposition for pandemic period +using StatsPlots +include("../test/download_EA_data.jl") + +plot_shock_decomposition(Smets_Wouters_2007, data[[1,2,3,4,6,7,8],78:end], variables = [:ygap,:y,:pinfobs,:robs], plots_per_page = 1, filter = :kalman, smooth = true) + +shck_dcmp = get_shock_decomposition(Smets_Wouters_2007, data[[1,2,3,4,6,7,8],78:end], initial_values = state20q1)#, +# filter = :kalman, smooth = false) + + +shck_dcmp([:ygap,:pinfobs,:robs,:y],:,118:125) + +# pandemic shock interepreted as mix of productivity and cost push shock +# inflation surge driven by cost push and mon. pol. shocks + +# estimate up to start of pandemic and compare stds to gauge difference + + xs = [string("x", i) for i = 1:10] ys = [string("y", i) for i = 1:4] z = float((1:4) * reshape(1:10, 1, :))