diff --git a/test/test_moments.jl b/test/test_moments.jl deleted file mode 100644 index 2a9afd6c..00000000 --- a/test/test_moments.jl +++ /dev/null @@ -1,557 +0,0 @@ - -using Distributions, OnlineStats, Statistics, StatsPlots -# StatsPlots.plotlyjs() - -using MacroModelling -@model RBC begin - 1 / c[0] = (β / c[1]) * (α * exp(z[1]) * k[0]^(α - 1) + (1 - δ)) - c[0] + k[0] = (1 - δ) * k[-1] + exp(z[0]) * k[-1]^α - z[0] = ρ * z[-1] + std_z * eps_z[x] -end; - -@parameters RBC begin - std_z = 0.01 - ρ = 0.2 - δ = 0.02 - α = 0.5 - β = 0.95 -end; - -sol = get_solution(RBC, RBC.parameter_values, algorithm = :second_order) - -get_var(RBC) -sol[1] -sol[2] -sol[3] - -T = RBC.timings; -A = @views sol[2][:,1:T.nPast_not_future_and_mixed] * diagm(ones(RBC.timings.nVars))[RBC.timings.past_not_future_and_mixed_idx,:] -C = @views sol[2][:,T.nPast_not_future_and_mixed+1:end] - - - - -using LinearMaps, IterativeSolvers, LinearAlgebra -CC = C * C' - -lm = LinearMap{Float64}(x -> A * reshape(x,size(CC)) * A' - reshape(x,size(CC)), length(CC)) - -covar = reshape(gmres(lm, vec(-CC)), size(CC)) -diag(covar) - -get_var(RBC) - - - -sim = 100000 -burnin = 1 -x = 0.0 -x̂ = zeros(sim) -β = [.95,-1.5,-1.95,.75,.1] - -s = Series(Moments()) - -for i in 1:sim - # x = β[1] * x + β[end] * randn() - # x = β[1] * x + β[2] * x^2 + β[end] * randn() - x = β[1] * x + β[2] * x^2 + β[3] * x^3 + β[end] * randn() - # x = β[1] * x + β[2] * x^2 + β[3] * x^3 + β[4] * x^4 + β[end] * randn() - x̂[i] = x - fit!(s, x) - # if i > burnin fit!(s, x) end -end -s - -[mean(x̂[burnin:end]), var(x̂[burnin:end]), skewness(x̂[burnin:end]), kurtosis(x̂[burnin:end])] - - -density(x̂) -plot!(fit(Normal, x̂)) -using Optim - -function simulate_moments(β) - sim = 1000000000 - x = 0.0 - x̄ = 0.0 - x̂ = zeros(sim) - for i in 1:sim - # x = β[1] * x + β[end] * randn() - E = randn() - x = β[1] * x + β[2] * x̄^2 + β[end] * E - x̄ = β[1] * x̄ + β[end] * E - # x = β[1] * x + β[2] * x^2 + β[3] * x^3 + β[end] * randn() - # x = β[1] * x + β[2] * x^2 + β[3] * x^3 + β[4] * x^4 + β[end] * randn() - x̂[i] = x - end - [mean(x̂), std(x̂), skewness(x̂), kurtosis(x̂)] -end -simulate_moments([.5,.5,.01]) - -simulate_moments([.95,-.05,-0.195,.075]) -sum(abs2,simulate_moments([.95,-.05,-0.195,.075]) - [.01,.1,.1,3]) - -sol = Optim.optimize(x->sum(abs2,simulate_moments(x) - [.01,.1,.5,0]),fill(eps(Float32),5), iterations = 1000, allow_f_increases = true) - - -sol.minimizer |> simulate_moments - -β = [.5,.01,.1] - -s = Series(Moments()) - -for i in 1:1000000 - x = β[1] * x + β[2] * x^2 + β[3] * randn() - fit!(s, x) -end -s - -x = Normal() - - -x̂ = β¹ * x + β² * x - -mean(x̂) - -# first order -a = .9 -b = .01 -x = 0 -x = a * x + b * randn() - -b / sqrt(1 - a^2) - -# second order -a = .9 -b = .5 -c = .01 - -x = 0 -x̂ = 0 - -x̂ = a * x̂ + c * randn() -# mean of x̂ = 0 -# std of x̂ = c / sqrt(1 - a^2) - -# mean of b * x̂^2 = b * c^2 / (1 - a^2) -# std of b * x̂^2 = sqrt(2) * b * c^2 / (1 - a^2) -# skew of b * x̂^2 = sqrt(8) -# kurtosis of b * x̂^2 = 12 -x = a * x + b * x̂^2 + c * randn() - -using Distributions -mean(.9*Chisq(1)) -std(.0009*Chisq(1)) -skewness(.0009*Chisq(1)) -kurtosis(.0009*Chisq(1)) - - -std(.0009*Normal()*Normal()) - -using SymPy, Statistics -x =("x",0,1) - - -xx = randn(1000000) * c / sqrt(1 - a^2) -mean(xx) -std(xx) -skewness(xx) -kurtosis(xx) - -b*(c / sqrt(1 - a^2))^2 * sqrt(2) -mean(b*xx.^2) -std(b*xx.^2) -skewness(b*xx.^2) -kurtosis(b*xx.^2) - - - -# covariance of multivariate normal ^ 2 -using Distributions -A = randn(2,2) -X = MultivariateNormal([1 .4;.4 3]) -X = rand(X,1000000).^2; -mean(X,dims=2) -std(X,dims=2) -var(X,dims=2) -mean([1 0; .5 -1]*X,dims=2) -std([1 0; .5 -1]*X,dims=2) -cov(X') - - -# mean of X^2 is var(X) -# std of X^2 is sqrt(2) * var(X) - -# X = A X + C ϵ - - - - -# mean of X is 0 -# var of X is solve A * covar * A' + C * C' - covar for covar - -# A = randn(2,2) -A = [.9 .1 ;-.1 .05] -# C = randn(2,2) -C = [.25 -.1 ;.31 .5] - -using LinearMaps, IterativeSolvers, LinearAlgebra -CC = C * C' - -lm = LinearMap{Float64}(x -> A * reshape(x,size(CC)) * A' - reshape(x,size(CC)), length(CC)) - -covar = reshape(gmres(lm, vec(-CC)), size(CC)) - -diag(covar) - - - - - -B = [0.5 0.75 ; 0.5 0] - - - - -# Σ_X̂ = A * Σ_X̂ * A' + B * E[X̄̂[i-1,:]^4] - (E[X̄̂[i-1,:]^2])^2 + C * C', - -EX22 = diag(covar^2) -EX4 = 3 * diag(A * covar * A').^2 + 6 * diag(A * covar * A') .* diag(C * C') + 3 * diag(C * C').^2 # works -# B * EX4 - covar^2 - -EX = B * diagm(EX4 - EX22) -EX = B * (EX4) - EX22 -EX = B * (3 * (A * covar * A').^2 + 6 * (A * covar * A') .* (C * C') + 3 * (C * C').^2) * B' -lmvar = LinearMap{Float64}(x -> A * reshape(x,size(CC)) * A' + EX - reshape(x,size(CC)), length(CC)) - -covarvar = reshape(gmres(lmvar, vec(-CC)), size(CC)) - -CC = C * C' -EX = diagm(diag(B * (3 * (A * covar * A').^2 + 6 * (A * covar * A') .* (C * C') + 3 * (C * C').^2 - covar.^2) * B')) -covX = EX + CC - -covX = A * covX * A' + EX + CC -for i in 1:1000 - covX = A * covX * A' + EX + CC -end -covX - - -var(X̂, dims = 1) - -eX4 = B * mean((X̄̂').^4,dims=2) -eX2 = mean((X̄̂'.^2),dims=2).^2 - -eX = diagm(vec(eX4 - eX2)) - -cov(X̂, dims = 1) -EX = cov(B * X̄̂[1:end-1,:]'.^2 + C * ϵ̄[2:end,:]', dims = 2) - - - -mean_X2 = diag(covar) -mean_BX2 = B*diag(covar) -std_X2 = sqrt(2) * diag(covar) -var_X2 = 2 * diag(covar).^2 -var_BX2 = diag(B * diagm(2 * diag(covar).^2) * B') -std_BX2 = sqrt.(diag(B * diagm(2 * diag(covar).^2) * B')) - - - -X = MultivariateNormal(diagm(diag(covar))) -X = rand(X,1000000).^2; -mean(X,dims=2) -mean(B*X,dims=2) -std(X,dims=2) -var(X,dims=2) -std(B*X,dims=2) -var(B*X,dims=2) - - -# B * X^2 + C * ϵ -X = MultivariateNormal(diagm(diag(covar))) -X = rand(X,1000000).^2; - -e = MultivariateNormal(diagm(ones(2))) -e = rand(e,1000000).^2; -x_up = B * X + C * e - -var(x_up, dims = 2) - - -var_BX2 = diag(B * diagm(2 * diag(covar).^2) * B') - -var_BX2Ce = var_BX2 + diag(C * C') -# var_BX2CeX = var_BX2 + diag(C * C') - - - -# for i in 1:1000 -# var_BX2CeX = diag(A * diagm(var_BX2CeX) * A') + var_BX2Ce -# end - -# diag(A * diagm(var_BX2Ce) * A') + var_BX2Ce -(diag(B * diagm(2 * diag(covar).^2) * B') + diag(C * C')) # this is the one since the two are independent -# diag((I - A) \ diagm(var_BX2Ce)) + 2*var_BX2Ce - - - -# full AR model -sim = 10000000 -X̂ = zeros(sim,2) -X̄̂ = zeros(sim,2) -ϵ̄ = randn(sim,2) - - -X̂[1,:] = C * ϵ̄[1,:] -X̄̂[1,:] = C * ϵ̄[1,:] -for i in 2:sim - X̂[i,:] = A * X̂[i-1,:] + B * X̄̂[i-1,:].^2 + C * ϵ̄[i,:] - X̄̂[i,:] = A * X̄̂[i-1,:] + C * ϵ̄[i,:] -end - -mean((A * X̄̂').^4,dims=2) - - -mean(X̂, dims = 1) -(I - A) \ B * diag(covar) # closed form mean -std(X̂, dims = 1) -var(X̂, dims = 1) - -cov(X̄̂.^2,ϵ̄) -cov((B*(X̄̂.^2)')',(C*ϵ̄')') -cov(X̄̂.^2,X̂) - -diag(A^1 * C*C' ./ diag(C*C')) - - -var(B * (X̄̂[1:end-1,:].^2)' + C * ϵ̄[2:end,:]', dims = 2) -(diag(B * diagm(2 * diag(covar).^2) * B') + diag(C * C')) # this is the one since the two are independent - - - - - -var(A * X̂', dims = 2) -var(B * (X̄̂.^2)', dims = 2) -var(A * X̂'+ B * (X̄̂.^2)', dims = 2) -(diag(B * diagm(2 * diag(covar).^2) * B') + diag(C * C')) # this is the one since the two are independent - -#### var(X̂, dims = 1) #### -# Var[A * X̂[i-1,:] + B * X̄̂[i-1,:].^2 + C * ϵ̄[i,:]] -# Var[A * X̂ + B * X̄̂.^2 + C * ϵ̄] -# Var[A * X̂] + Var[B * X̄̂.^2] + Var[C * ϵ̄] + 2 * Covar[A * X̂,B * X̄̂.^2] -var(X̂, dims = 1) # missing error term -var(A * X̂' + B * (X̄̂.^2)', dims = 2) -var(A * X̂', dims = 2) + var(B * (X̄̂.^2)', dims = 2) + 2 * diag(cov(A * X̂',B * (X̄̂.^2)', dims = 2)) -cov(X̂',(X̄̂.^2)', dims = 2) -cov(X̂',(X̄̂.^2)', dims = 2) - - -diag(cov(A * X̂',B * (X̄̂.^2)', dims = 2)) -mean((A * X̂') .* (B * (X̄̂.^2)'), dims = 2) - mean((A * X̂'), dims = 2) .* mean((B * (X̄̂.^2)'), dims = 2) - -mean((A * X̂' + B * (X̄̂.^2)').^2, dims = 2) - mean(A * X̂' + B * (X̄̂.^2)', dims = 2).^2 - -mean((A * X̂' + B * (X̄̂.^2)').^2, dims = 2) - (mean(A * X̂', dims = 2) .+ mean(B * (X̄̂.^2)', dims = 2)).^2 - -mean((A * X̂' + B * (X̄̂.^2)').^2, dims = 2) - (mean(A * X̂', dims = 2).^2 .+ mean(B * (X̄̂.^2)', dims = 2).^2 .+ 2 * mean(A * X̂', dims = 2) .* mean(B * (X̄̂.^2)', dims = 2)) - - -mean((A * X̂' + B * (X̄̂.^2)').^2, dims = 2) -mean((A * X̂').^2, dims = 2) + mean((B * (X̄̂.^2)').^2, dims = 2) + mean(2 * ((A * X̂') .* (B * (X̄̂.^2)')), dims = 2) - - - -mean(X̂, dims = 1) -mean(X̄̂, dims = 1) -mean(X̂.*X̄̂, dims = 1) -mean(X̂.^2, dims = 1) -mean(X̄̂.^2, dims = 1) - -mean(X̂, dims = 1).*mean(X̄̂, dims = 1) - -mean(2 * ((A * X̂') .* (B * (X̄̂.^2)')), dims = 2) -mean(2 * (A * (A * X̂[1:end-1,:]' + B * X̄̂[1:end-1,:]'.^2 + C * ϵ̄[2:end,:]') .* (B * (X̄̂[2:end,:].^2)')), dims = 2) - -# mean(2 * (A * (C * ϵ̄[2:end,:]') .* (B * (X̄̂[2:end,:].^2)')), dims = 2) -mean(2 * (A * (B * X̄̂[1:end-1,:]'.^2) .* (B * (X̄̂[2:end,:].^2)')), dims = 2) + mean(2 * (A * (A * X̂[1:end-1,:]') .* (B * (X̄̂[2:end,:].^2)')), dims = 2) - - - - -mean((A * X̂').^2, dims = 2) -var(A * X̂', dims = 2) -mean((B * (X̄̂.^2)').^2, dims = 2) -var(B * (X̄̂.^2)', dims = 2) - -diag(cov(A * X̂',B * (X̄̂.^2)', dims = 2)) -2 * mean((A * X̂') .* (B * (X̄̂.^2)'), dims = 2) - -A^2 * var(X̂', dims = 2) + B^2 * var(X̄̂'.^2, dims=2) + 2 * A * B * var(X̂' .* (X̄̂.^2)', dims = 2) - - -2 * A * B * var(A * X̂' + B * (X̄̂.^2)', dims = 2) - -var(A * X̂' + B * (X̄̂.^2)', dims = 2) - -var(A * X̂', dims = 2) -diag(A * cov(X̂', dims = 2) * A') - -# Var[B * X̄̂.^2] = B * Var[X̄̂.^2] * B' = B * (E[X̄̂.^4] - E[X̄̂.^2]^2) * B' -diag(B * (3 * (A * covar * A').^2 + 6 * (A * covar * A') .* (C * C') + 3 * (C * C').^2 - covar.^2) * B') -var(B * (X̄̂').^2,dims=2) - -# E[X̄̂.^4] = Var[X̄̂.^2] + Var[X̄̂]^2 = (A * X̄̂[i-1,:] + C * ϵ̄[i,:])^4 -# E[X̄̂.^4] = 3 * (Var[X̄̂[i,:]])^2 + 4 * E[X̄̂[i,:]] * Var[X̄̂[i,:]] + (E[X̄̂[i,:]])^2 - - -# E[X̄̂.^4] = Var[X̄̂.^2] + Var[X̄̂]^2 = E[(A * X̄̂[i-1,:] + C * ϵ̄[i,:])^4] -# (A * X̄̂[i-1,:] + C * ϵ̄[i,:])^4 = E[(A * X̄̂[i-1,:])^4] + E[4*(A * X̄̂[i-1,:])^3*(C * ϵ̄[i,:])] + E[6*(A * X̄̂[i-1,:])^2*(C * ϵ̄[i,:])^2] + E[4*(A * X̄̂[i-1,:])*(C * ϵ̄[i,:])^3] + E[(C * ϵ̄[i,:])^4] - - -# E[X̄̂.^4] -3 * diag(A * covar * A').^2 + 6 * diag(A * covar * A') .* diag(C * C') + 3 * diag(C * C').^2 # works -mean((X̄̂').^4,dims=2) - -# E[(A * X̄̂[i-1,:])^4] + -diag(A * covar * A').^2 * 3 # works -mean((A * X̄̂').^4,dims=2) - -### E[4*(A * X̄̂[i-1,:])^3*(C * ϵ̄[i,:])] + - -# E[6*(A * X̄̂[i-1,:])^2*(C * ϵ̄[i,:])^2] + -# E[6*(A * X̄̂[i-1,:])^2] * E[(C * ϵ̄[i,:])^2] -6 * diag(A * covar * A') .* diag(C * C') # thats the one -mean( 6*(A * X̄̂[1:end-1,:]').^2, dims = 2) -mean(X̄̂[1:end-1,:]'.^2, dims = 2) -mean((C * ϵ̄[2:end,:]').^2, dims = 2) .* mean( 6*(A * X̄̂[1:end-1,:]').^2, dims = 2) -mean( 6*(A * X̄̂[1:end-1,:]').^2 .*(C * ϵ̄[2:end,:]').^2, dims = 2) -### E[4*(A * X̄̂[i-1,:])*(C * ϵ̄[i,:])^3] + - -# E[(C * ϵ̄[i,:])^4] -diag(C * C').^2 * 3 # works - -mean((C * ϵ̄').^4,dims=2) - - -(I - A) \ ((diag(C * C').^2 * 3) + 6 * diag(A * covar * A') .* diag(C * C')) - - -(I - A) \ (diag(C * C').^2 * 3 + 6 * diag(A * covar * A') .* diag(C * C')) - -3 * var(X̄̂, dims = 1).^2 + 4 * mean(X̄̂, dims = 1) .* var(X̄̂, dims = 1) + mean(X̄̂, dims = 1).^2 - -# mean(X̄̂, dims = 1).^4 ./ std(X̄̂, dims = 1).^4 -mean(X̄̂.^4, dims = 1) -var(X̄̂.^2, dims = 1) + var(X̄̂, dims = 1).^2 - -mean(X̄̂.^2, dims = 1) -(I - A) \ (C * C') - -(I - A) \ ((B * diagm(2 * diag(covar).^2) * B') + (C * C')) - -(I - A) \ ((I - A) \ ((diag(B * diagm(2 * diag(covar).^2) * B')) + diag(C * C')) + diag(C * C')) - -# E[X̂ * X̄̂] - -(A * X̂[i-1,:] + B * X̄̂[i-1,:].^2 + C * ϵ̄[i,:]) * (A * X̄̂[i-1,:] + C * ϵ̄[i,:]) - -(A * X̂ + B * X̄̂.^2 + C * ϵ̄) * (A * X̄̂ + C * ϵ̄) - -A * X̂ * A * X̄̂ + B * X̄̂.^2*A * X̄̂ + C * ϵ̄ * A * X̄̂ + A * X̂ * C * ϵ̄ + B * X̄̂.^2 * C * ϵ̄ + C * ϵ̄ * C * ϵ̄ - -mean(X̂ .* X̄̂, dims = 1) -mean(X̄̂.^3, dims = 1) -mean(X̂[1:end-1,:] .* ϵ̄[2:end,:], dims = 1) -mean(X̄̂[1:end-1,:] .* ϵ̄[2:end,:], dims = 1) -mean(X̄̂[1:end-1,:].^2 .* ϵ̄[2:end,:], dims = 1) -mean(ϵ̄.^2, dims = 1) - - -var(X̄̂.^2, dims = 1) - -A * X̂ * A * X̄̂ + C * C' -A * X̂ * A * X̄̂ + C * C' - - -# here is mean(X̂, dims = 1) -(I - A) \ B * diag(covar) - -# lets start from scratch. i am looking for var(X̂, dims = 1) -# with X̂[i,:] = A * X̂[i-1,:] + B * X̄̂[i-1,:].^2 + C * ϵ̄[i,:] -# and X̄̂[i,:] = A * X̄̂[i-1,:] + C * ϵ̄[i,:] - -var(A * X̂[1:end-1,:]' + B * X̄̂[1:end-1,:]'.^2 + C * ϵ̄[2:end,:]', dims = 2) -var(A * X̂[1:end-1,:]', dims = 2) + var(B * X̄̂[1:end-1,:]'.^2, dims = 2) + var(C * ϵ̄[2:end,:]', dims = 2) + 2 * diag(cov(A * X̂[1:end-1,:]', B * X̄̂[1:end-1,:]'.^2, dims = 2)) + 2 * diag(cov(A * X̂[1:end-1,:]', C * ϵ̄[2:end,:]', dims = 2)) + 2 * diag(cov(B * X̄̂[1:end-1,:]'.^2, C * ϵ̄[2:end,:]', dims = 2)) - - - -#this is the significant part: -var(A * X̂[1:end-1,:]', dims = 2) - - -var(B * X̄̂[1:end-1,:]'.^2, dims = 2) -# diag(B * (3 * (A * covar * A').^2 + 6 * (A * covar * A') .* (C * C') + 3 * (C * C').^2 - covar.^2) * B') # works - -var(C * ϵ̄[2:end,:]', dims = 2) -# C * C' # works - -2 * diag(cov(A * X̂[1:end-1,:]', B * X̄̂[1:end-1,:]'.^2, dims = 2)) - -cov(A * X̂[1:end-1,:]', B * X̄̂[1:end-1,:]'.^2, dims = 2) - -diagm(vec(mean((A * X̂[1:end-1,:]') .* (B * X̄̂[1:end-1,:]'.^2) , dims = 2))) - mean((B * X̄̂[1:end-1,:]'.^2) , dims = 2) * mean((A * X̂[1:end-1,:]') , dims = 2)' - -mean((A * X̂[1:end-1,:]') .* (B * X̄̂[1:end-1,:]'.^2) , dims = 2) - diag(mean((B * X̄̂[1:end-1,:]'.^2) , dims = 2) * mean((A * X̂[1:end-1,:]') , dims = 2)') - - -var(A * X̂[1:end-1,:]', dims = 2) + var(B * X̄̂[1:end-1,:]'.^2, dims = 2) + var(C * ϵ̄[2:end,:]', dims = 2) + 2 * (mean((A * X̂[1:end-1,:]') .* (B * X̄̂[1:end-1,:]'.^2) , dims = 2) - diag((B * mean(X̄̂[1:end-1,:]'.^2 , dims = 2)) * (A * mean(X̂[1:end-1,:]' , dims = 2))')) - - -mean((A * X̂[1:end-1,:]') , dims = 2) - -diag((B * mean(X̄̂[1:end-1,:]'.^2 , dims = 2)) * (A * mean(X̂[1:end-1,:]' , dims = 2))') - -diag(B * diag(covar) * (A * ((I - A) \ B * diag(covar)))') - - - - -var(A * X̂[1:end-1,:]', dims = 2) + var(B * X̄̂[1:end-1,:]'.^2, dims = 2) + var(C * ϵ̄[2:end,:]', dims = 2) + 2 * (mean((A * X̂[1:end-1,:]') .* (B * X̄̂[1:end-1,:]'.^2) , dims = 2) - diag(B * diag(covar) * (A * ((I - A) \ B * diag(covar)))')) - - - - -var(X̂, dims = 1) -mean(X̂.^2, dims = 1) - mean(X̂, dims = 1).^2 - -(var(A * X̂', dims = 2) + -2 * mean((A * X̂') .* (B * X̄̂'.^2) , dims = 2) + - -diag(B * (3 * (A * covar * A').^2 + -6 * (A * covar * A') .* (C * C') + 3 * (C * C').^2 - covar.^2) * B') + -diag(C * C') + -- 2 * diag(B * diag(covar) * (A * ((I - A) \ B * diag(covar)))')) - - - -var(A * X̂', dims = 2) -mean((A * X̂').^2, dims = 2) - mean((A * X̂'), dims = 2).^2 -mean((A * X̂').^2, dims = 2) - (A * mean(X̂, dims = 1)').^2 - - - -mean((A * X̂').^2, dims = 2) - (A * ((I - A) \ B * diag(covar))).^2 - - - - -var(X̂', dims = 2) -(mean((A * X̂').^2, dims = 2) + -2 * mean((A * X̂') .* (B * X̄̂'.^2) , dims = 2) - - -(A * ((I - A) \ B * diag(covar))).^2 + -diag(B * (3 * (A * covar * A').^2 + -6 * (A * covar * A') .* (C * C') + 3 * (C * C').^2 - covar.^2) * B') + -diag(C * C') + -- 2 * diag(B * diag(covar) * (A * ((I - A) \ B * diag(covar)))')) \ No newline at end of file