diff --git a/src/MacroModelling.jl b/src/MacroModelling.jl index 89c18e00..87d570a4 100644 --- a/src/MacroModelling.jl +++ b/src/MacroModelling.jl @@ -3649,8 +3649,9 @@ function solve_steady_state!(𝓂::β„³; verbose::Bool = false) end # Zero initial value if startin without guess - for i in 1:2:length(closest_solution) - if !isfinite(sum(abs,closest_solution[i+1])) + if !isfinite(sum(abs,closest_solution[2])) + closest_solution = copy(closest_solution) + for i in 1:2:length(closest_solution) closest_solution[i] = zeros(length(closest_solution[i])) end end diff --git a/src/algorithms/quadratic_matrix_equation.jl b/src/algorithms/quadratic_matrix_equation.jl index 864eebf5..6dcd6931 100644 --- a/src/algorithms/quadratic_matrix_equation.jl +++ b/src/algorithms/quadratic_matrix_equation.jl @@ -28,7 +28,7 @@ function solve_quadratic_matrix_equation(A::AbstractMatrix{R}, reached_tol = β„’.norm(AXX) / AXXnorm - if reached_tol < tol # 1e-12 is too large eps is too small + if reached_tol < (tol * length(initial_guess) / 1e6)# 1e-12 is too large eps is too small; if you use the low tol it can be that a small change in the parameters still yields an acceptable solution but as a better tol can be reached it is actually not accurate if verbose println("Quadratic matrix equation solver previous solution has tolerance: $reached_tol") end return initial_guess, true diff --git a/src/get_functions.jl b/src/get_functions.jl index df373b98..9ee104b3 100644 --- a/src/get_functions.jl +++ b/src/get_functions.jl @@ -2131,9 +2131,9 @@ function get_correlation(𝓂::β„³; solve!(𝓂, parameters = parameters, algorithm = algorithm, verbose = verbose) if algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, SS_and_pars = calculate_third_order_moments(𝓂.parameter_values, :full_covar, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, state_ΞΌ, SS_and_pars, solved = calculate_third_order_moments(𝓂.parameter_values, :full_covar, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) elseif algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) else covar_dcmp, sol, _, SS_and_pars, solved = calculate_covariance(𝓂.parameter_values, 𝓂, verbose = verbose, lyapunov_algorithm = lyapunov_algorithm) @@ -2225,9 +2225,9 @@ function get_autocorrelation(𝓂::β„³; solve!(𝓂, parameters = parameters, algorithm = algorithm, verbose = verbose) if algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, autocorr, SS_and_pars = calculate_third_order_moments(𝓂.parameter_values, 𝓂.timings.var, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose, autocorrelation = true) + covar_dcmp, state_ΞΌ, autocorr, SS_and_pars, solved = calculate_third_order_moments(𝓂.parameter_values, 𝓂.timings.var, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose, autocorrelation = true) elseif algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) sΜ‚_to_ŝ₂ⁱ = β„’.diagm(ones(size(Ξ£αΆ»β‚‚,1))) @@ -2459,7 +2459,7 @@ function get_moments(𝓂::β„³; end if algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) # dvariance = π’œ.jacobian(𝒷(), x -> covariance_parameter_derivatives_second_order(x, param_idx, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose), 𝓂.parameter_values[param_idx])[1] dvariance = π’Ÿ.jacobian(x -> max.(β„’.diag(calculate_second_order_moments(x, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose)[1]),eps(Float64)), backend, 𝓂.parameter_values)[:,param_idx] @@ -2468,7 +2468,7 @@ function get_moments(𝓂::β„³; var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, state_ΞΌ, _, solved = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) # dvariance = π’œ.jacobian(𝒷(), x -> covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose), 𝓂.parameter_values[param_idx])[1] dvariance = π’Ÿ.jacobian(x -> max.(β„’.diag(calculate_third_order_moments(x, variables, 𝓂, dependencies_tol = dependencies_tol, lyapunov_algorithm = lyapunov_algorithm, sylvester_algorithm = sylvester_algorithm, verbose = verbose)[1]),eps(Float64)), backend, 𝓂.parameter_values)[:,param_idx] @@ -2526,7 +2526,7 @@ function get_moments(𝓂::β„³; end if algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) # dst_dev = π’œ.jacobian(𝒷(), x -> sqrt.(covariance_parameter_derivatives_second_order(x, param_idx, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose)), 𝓂.parameter_values[param_idx])[1] dst_dev = π’Ÿ.jacobian(x -> sqrt.(max.(β„’.diag(calculate_second_order_moments(x, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose)[1]),eps(Float64))), backend, 𝓂.parameter_values)[:,param_idx] @@ -2535,7 +2535,7 @@ function get_moments(𝓂::β„³; var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, state_ΞΌ, _, solved = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) # dst_dev = π’œ.jacobian(𝒷(), x -> sqrt.(covariance_parameter_derivatives_third_order(x, variables, param_idx, 𝓂, dependencies_tol = dependencies_tol, lyapunov_algorithm = lyapunov_algorithm, sylvester_algorithm = sylvester_algorithm, verbose = verbose)), 𝓂.parameter_values[param_idx])[1] dst_dev = π’Ÿ.jacobian(x -> sqrt.(max.(β„’.diag(calculate_third_order_moments(x, variables, 𝓂, dependencies_tol = dependencies_tol, lyapunov_algorithm = lyapunov_algorithm, sylvester_algorithm = sylvester_algorithm, verbose = verbose)[1]),eps(Float64))), backend, 𝓂.parameter_values)[:,param_idx] @@ -2612,12 +2612,12 @@ function get_moments(𝓂::β„³; if variance if algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) if mean var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose) + covar_dcmp, state_ΞΌ, _, solved = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose) if mean var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end @@ -2638,12 +2638,12 @@ function get_moments(𝓂::β„³; if standard_deviation if algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) if mean var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, _ = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose) + covar_dcmp, state_ΞΌ, _, solved = calculate_third_order_moments(𝓂.parameter_values, variables, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose) if mean var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end @@ -2657,12 +2657,12 @@ function get_moments(𝓂::β„³; if covariance if algorithm == :pruned_second_order - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(𝓂.parameter_values, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) if mean var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end elseif algorithm == :pruned_third_order - covar_dcmp, state_ΞΌ, _ = calculate_third_order_moments(𝓂.parameter_values, :full_covar, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose) + covar_dcmp, state_ΞΌ, _, solved = calculate_third_order_moments(𝓂.parameter_values, :full_covar, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, dependencies_tol = dependencies_tol, verbose = verbose) if mean var_means = KeyedArray(state_ΞΌ[var_idx]; Variables = axis1) end @@ -2861,6 +2861,8 @@ function get_statistics(𝓂, all_parameters = vcat(other_parameter_values, parameter_values)[sort_idx] + solved = true + if algorithm == :pruned_third_order && !(!(standard_deviation == Symbol[]) || !(variance == Symbol[]) || !(covariance == Symbol[]) || !(autocorrelation == Symbol[])) algorithm = :pruned_second_order end @@ -2872,20 +2874,20 @@ function get_statistics(𝓂, if !(autocorrelation == Symbol[]) second_mom_third_order = union(autocorrelation, standard_deviation, variance, covariance) - covar_dcmp, state_ΞΌ, autocorr, SS_and_pars = calculate_third_order_moments(all_parameters, second_mom_third_order, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose, autocorrelation = true, autocorrelation_periods = autocorrelation_periods) + covar_dcmp, state_ΞΌ, autocorr, SS_and_pars, solved = calculate_third_order_moments(all_parameters, second_mom_third_order, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose, autocorrelation = true, autocorrelation_periods = autocorrelation_periods) elseif !(standard_deviation == Symbol[]) || !(variance == Symbol[]) || !(covariance == Symbol[]) - covar_dcmp, state_ΞΌ, SS_and_pars = calculate_third_order_moments(all_parameters, union(variance,covariance,standard_deviation), 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, state_ΞΌ, SS_and_pars, solved = calculate_third_order_moments(all_parameters, union(variance,covariance,standard_deviation), 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) end elseif algorithm == :pruned_second_order if !(standard_deviation == Symbol[]) || !(variance == Symbol[]) || !(covariance == Symbol[]) || !(autocorrelation == Symbol[]) - covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(all_parameters, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + covar_dcmp, Ξ£αΆ»β‚‚, state_ΞΌ, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(all_parameters, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) else - state_ΞΌ, Δμ˒₂, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = calculate_second_order_moments(all_parameters, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose, covariance = false) + state_ΞΌ, Δμ˒₂, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = calculate_second_order_moments(all_parameters, 𝓂, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose, covariance = false) end else diff --git a/src/macros.jl b/src/macros.jl index 3695c5cf..20084258 100644 --- a/src/macros.jl +++ b/src/macros.jl @@ -1544,14 +1544,14 @@ macro parameters(𝓂,ex...) # println("Find SS solver parameters which solve for the NSSS:\t",round(time() - start_time, digits = 3), " seconds") end - if !found_solution - @warn "Could not find non-stochastic steady state. Consider setting bounds on variables or calibrated parameters in the `@parameters` section (e.g. `k > 10`)." - end - if !$silent println(round(time() - start_time, digits = 3), " seconds") end + if !found_solution + @warn "Could not find non-stochastic steady state. Consider setting bounds on variables or calibrated parameters in the `@parameters` section (e.g. `k > 10`)." + end + mod.$𝓂.solution.non_stochastic_steady_state = SS_and_pars mod.$𝓂.solution.outdated_NSSS = false end diff --git a/src/moments.jl b/src/moments.jl index 489c32c5..0360faf0 100644 --- a/src/moments.jl +++ b/src/moments.jl @@ -130,17 +130,31 @@ function calculate_mean(parameters::Vector{T}, # return mean_of_variables, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, true end - - +function calculate_second_order_moments(parameters::Vector{R}, + 𝓂::β„³; + covariance::Bool = true, + verbose::Bool = false, + sylvester_algorithm::Symbol = :doubling, + lyapunov_algorithm::Symbol = :doubling, + tol::AbstractFloat = eps()) where R <: Real + calculate_second_order_moments( + parameters, + 𝓂, + Val(covariance); + verbose = verbose, + sylvester_algorithm = sylvester_algorithm, + lyapunov_algorithm = lyapunov_algorithm, + tol = tol) +end function calculate_second_order_moments( parameters::Vector{R}, - 𝓂::β„³; - covariance::Bool = true, + 𝓂::β„³, + ::Val{false}; # covariance; verbose::Bool = false, sylvester_algorithm::Symbol = :doubling, lyapunov_algorithm::Symbol = :doubling, - tol::AbstractFloat = eps())::Union{Tuple{Matrix{R}, Matrix{R}, Vector{R}, Vector{R}, Matrix{R}, Matrix{R}, Matrix{R}, Matrix{R}, Matrix{R}, Vector{R}, Matrix{R}, Matrix{R}, AbstractSparseMatrix{R}, AbstractSparseMatrix{R}}, Tuple{Vector{R}, Vector{R}, Matrix{R}, Matrix{R}, Vector{R}, Matrix{R}, Matrix{R}, AbstractSparseMatrix{R}, AbstractSparseMatrix{R}}} where R <: Real + tol::AbstractFloat = eps())::Tuple{Vector{R}, Vector{R}, Matrix{R}, Matrix{R}, Vector{R}, Matrix{R}, Matrix{R}, AbstractSparseMatrix{R}, AbstractSparseMatrix{R}, Bool} where R <: Real Σʸ₁, 𝐒₁, βˆ‡β‚, SS_and_pars, solved = calculate_covariance(parameters, 𝓂, verbose = verbose, lyapunov_algorithm = lyapunov_algorithm) @@ -244,10 +258,122 @@ function calculate_second_order_moments( Δμ˒₂ = vec((β„’.I - s_to_s₁) \ (s_s_to_sβ‚‚ * vec(Σᢻ₁) / 2 + (v_v_to_sβ‚‚ + e_e_to_sβ‚‚ * vec(β„’.I(nᡉ))) / 2)) ΞΌΚΈβ‚‚ = SS_and_pars[1:𝓂.timings.nVars] + sΜ‚_to_yβ‚‚ * μ˒⁺₂ + yvβ‚‚ - if !covariance - return ΞΌΚΈβ‚‚, Δμ˒₂, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ + return ΞΌΚΈβ‚‚, Δμ˒₂, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, (solved && solved2) +end + + + +function calculate_second_order_moments( + parameters::Vector{R}, + 𝓂::β„³, + ::Val{true}; # covariance + verbose::Bool = false, + sylvester_algorithm::Symbol = :doubling, + lyapunov_algorithm::Symbol = :doubling, + tol::AbstractFloat = eps())::Tuple{Matrix{R}, Matrix{R}, Vector{R}, Vector{R}, Matrix{R}, Matrix{R}, Matrix{R}, Matrix{R}, Matrix{R}, Vector{R}, Matrix{R}, Matrix{R}, AbstractSparseMatrix{R}, AbstractSparseMatrix{R}, Bool} where R <: Real + + Σʸ₁, 𝐒₁, βˆ‡β‚, SS_and_pars, solved = calculate_covariance(parameters, 𝓂, verbose = verbose, lyapunov_algorithm = lyapunov_algorithm) + + nᡉ = 𝓂.timings.nExo + + nΛ’ = 𝓂.timings.nPast_not_future_and_mixed + + iΛ’ = 𝓂.timings.past_not_future_and_mixed_idx + + Σᢻ₁ = Σʸ₁[iΛ’, iΛ’] + + # precalc second order + ## mean + I_plus_s_s = sparse(reshape(β„’.kron(vec(β„’.I(nΛ’)), β„’.I(nΛ’)), nΛ’^2, nΛ’^2) + β„’.I) + + ## covariance + E_e⁴ = zeros(nᡉ * (nᡉ + 1)Γ·2 * (nᡉ + 2)Γ·3 * (nᡉ + 3)Γ·4) + + quadrup = multiplicate(nᡉ, 4) + + comb⁴ = reduce(vcat, generateSumVectors(nᡉ, 4)) + + comb⁴ = comb⁴ isa Int64 ? reshape([comb⁴],1,1) : comb⁴ + + for j = 1:size(comb⁴,1) + E_e⁴[j] = product_moments(β„’.I(nᡉ), 1:nᡉ, comb⁴[j,:]) end + e⁴ = quadrup * E_e⁴ + + # second order + βˆ‡β‚‚ = calculate_hessian(parameters, SS_and_pars, 𝓂)# * 𝓂.solution.perturbation.second_order_auxilliary_matrices.π”βˆ‡β‚‚ + + 𝐒₂, solved2 = calculate_second_order_solution(βˆ‡β‚, βˆ‡β‚‚, 𝐒₁, + 𝓂.solution.perturbation.second_order_auxilliary_matrices; + T = 𝓂.timings, + tol = tol, + initial_guess = 𝓂.solution.perturbation.second_order_solution, + sylvester_algorithm = sylvester_algorithm, + verbose = verbose) + + if eltype(𝐒₂) == Float64 && solved2 𝓂.solution.perturbation.second_order_solution = 𝐒₂ end + + 𝐒₂ *= 𝓂.solution.perturbation.second_order_auxilliary_matrices.𝐔₂ + + 𝐒₂ = sparse(𝐒₂) + + s_in_s⁺ = BitVector(vcat(ones(Bool, nΛ’), zeros(Bool, nᡉ + 1))) + e_in_s⁺ = BitVector(vcat(zeros(Bool, nΛ’ + 1), ones(Bool, nᡉ))) + v_in_s⁺ = BitVector(vcat(zeros(Bool, nΛ’), 1, zeros(Bool, nᡉ))) + + kron_s_s = β„’.kron(s_in_s⁺, s_in_s⁺) + kron_e_e = β„’.kron(e_in_s⁺, e_in_s⁺) + kron_v_v = β„’.kron(v_in_s⁺, v_in_s⁺) + kron_s_e = β„’.kron(s_in_s⁺, e_in_s⁺) + + # first order + s_to_y₁ = 𝐒₁[:, 1:nΛ’] + e_to_y₁ = 𝐒₁[:, (nΛ’ + 1):end] + + s_to_s₁ = 𝐒₁[iΛ’, 1:nΛ’] + e_to_s₁ = 𝐒₁[iΛ’, (nΛ’ + 1):end] + + + # second order + s_s_to_yβ‚‚ = 𝐒₂[:, kron_s_s] + e_e_to_yβ‚‚ = 𝐒₂[:, kron_e_e] + v_v_to_yβ‚‚ = 𝐒₂[:, kron_v_v] + s_e_to_yβ‚‚ = 𝐒₂[:, kron_s_e] + + s_s_to_sβ‚‚ = 𝐒₂[iΛ’, kron_s_s] |> collect + e_e_to_sβ‚‚ = 𝐒₂[iΛ’, kron_e_e] + v_v_to_sβ‚‚ = 𝐒₂[iΛ’, kron_v_v] |> collect + s_e_to_sβ‚‚ = 𝐒₂[iΛ’, kron_s_e] + + s_to_s₁_by_s_to_s₁ = β„’.kron(s_to_s₁, s_to_s₁) |> collect + e_to_s₁_by_e_to_s₁ = β„’.kron(e_to_s₁, e_to_s₁) + s_to_s₁_by_e_to_s₁ = β„’.kron(s_to_s₁, e_to_s₁) + + # # Set up in pruned state transition matrices + sΜ‚_to_sΜ‚β‚‚ = [ s_to_s₁ zeros(nΛ’, nΛ’ + nΛ’^2) + zeros(nΛ’, nΛ’) s_to_s₁ s_s_to_sβ‚‚ / 2 + zeros(nΛ’^2, 2*nΛ’) s_to_s₁_by_s_to_s₁ ] + + eΜ‚_to_sΜ‚β‚‚ = [ e_to_s₁ zeros(nΛ’, nᡉ^2 + nᡉ * nΛ’) + zeros(nΛ’,nᡉ) e_e_to_sβ‚‚ / 2 s_e_to_sβ‚‚ + zeros(nΛ’^2,nᡉ) e_to_s₁_by_e_to_s₁ I_plus_s_s * s_to_s₁_by_e_to_s₁] + + sΜ‚_to_yβ‚‚ = [s_to_y₁ s_to_y₁ s_s_to_yβ‚‚ / 2] + + eΜ‚_to_yβ‚‚ = [e_to_y₁ e_e_to_yβ‚‚ / 2 s_e_to_yβ‚‚] + + sΜ‚vβ‚‚ = [ zeros(nΛ’) + vec(v_v_to_sβ‚‚) / 2 + e_e_to_sβ‚‚ / 2 * vec(β„’.I(nᡉ)) + e_to_s₁_by_e_to_s₁ * vec(β„’.I(nᡉ))] + + yvβ‚‚ = (vec(v_v_to_yβ‚‚) + e_e_to_yβ‚‚ * vec(β„’.I(nᡉ))) / 2 + + ## Mean + μ˒⁺₂ = (β„’.I - sΜ‚_to_sΜ‚β‚‚) \ sΜ‚vβ‚‚ + Δμ˒₂ = vec((β„’.I - s_to_s₁) \ (s_s_to_sβ‚‚ * vec(Σᢻ₁) / 2 + (v_v_to_sβ‚‚ + e_e_to_sβ‚‚ * vec(β„’.I(nᡉ))) / 2)) + ΞΌΚΈβ‚‚ = SS_and_pars[1:𝓂.timings.nVars] + sΜ‚_to_yβ‚‚ * μ˒⁺₂ + yvβ‚‚ + # Covariance Ξ“β‚‚ = [ β„’.I(nᡉ) zeros(nᡉ, nᡉ^2 + nᡉ * nΛ’) zeros(nᡉ^2, nᡉ) reshape(e⁴, nᡉ^2, nᡉ^2) - vec(β„’.I(nᡉ)) * vec(β„’.I(nᡉ))' zeros(nᡉ^2, nᡉ * nΛ’) @@ -265,7 +391,7 @@ function calculate_second_order_moments( autocorr_tmp = sΜ‚_to_sΜ‚β‚‚ * Ξ£αΆ»β‚‚ * sΜ‚_to_yβ‚‚' + eΜ‚_to_sΜ‚β‚‚ * Ξ“β‚‚ * eΜ‚_to_yβ‚‚' - return Ξ£ΚΈβ‚‚, Ξ£αΆ»β‚‚, ΞΌΚΈβ‚‚, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ + return Ξ£ΚΈβ‚‚, Ξ£αΆ»β‚‚, ΞΌΚΈβ‚‚, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, (solved && solved2 && info) end @@ -286,15 +412,16 @@ function calculate_third_order_moments(parameters::Vector{T}, tol::AbstractFloat = eps()) where {U, T <: Real} second_order_moments = calculate_second_order_moments(parameters, - 𝓂, + 𝓂, + Val(true); verbose = verbose, sylvester_algorithm = sylvester_algorithm, lyapunov_algorithm = lyapunov_algorithm) - Ξ£ΚΈβ‚‚, Ξ£αΆ»β‚‚, ΞΌΚΈβ‚‚, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ = second_order_moments + Ξ£ΚΈβ‚‚, Ξ£αΆ»β‚‚, ΞΌΚΈβ‚‚, Δμ˒₂, autocorr_tmp, sΜ‚_to_sΜ‚β‚‚, sΜ‚_to_yβ‚‚, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved = second_order_moments if !covariance && !autocorrelation - return ΞΌΚΈβ‚‚, Δμ˒₂, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚ + return ΞΌΚΈβ‚‚, Δμ˒₂, Σʸ₁, Σᢻ₁, SS_and_pars, 𝐒₁, βˆ‡β‚, 𝐒₂, βˆ‡β‚‚, solved end βˆ‡β‚ƒ = calculate_third_order_derivatives(parameters, SS_and_pars, 𝓂)# * 𝓂.solution.perturbation.third_order_auxilliary_matrices.π”βˆ‡β‚ƒ @@ -354,6 +481,8 @@ function calculate_third_order_moments(parameters::Vector{T}, autocorr = zeros(T, size(Ξ£ΚΈβ‚‚,1), length(autocorrelation_periods)) end + solved_lyapunov = true + # Threads.@threads for ords in orders for ords in orders variance_observable, dependencies_all_vars = ords @@ -497,6 +626,8 @@ function calculate_third_order_moments(parameters::Vector{T}, Σᢻ₃, info = solve_lyapunov_equation(sΜ‚_to_ŝ₃, C, lyapunov_algorithm = lyapunov_algorithm, verbose = verbose) + solved_lyapunov = solved_lyapunov && info + Σʸ₃tmp = sΜ‚_to_y₃ * Σᢻ₃ * sΜ‚_to_y₃' + eΜ‚_to_y₃ * Γ₃ * eΜ‚_to_y₃' + eΜ‚_to_y₃ * Eα΄ΈαΆ» * sΜ‚_to_y₃' + sΜ‚_to_y₃ * Eα΄ΈαΆ»' * eΜ‚_to_y₃' for obs in variance_observable @@ -533,9 +664,9 @@ function calculate_third_order_moments(parameters::Vector{T}, end if autocorrelation - return Σʸ₃, ΞΌΚΈβ‚‚, autocorr, SS_and_pars + return Σʸ₃, ΞΌΚΈβ‚‚, autocorr, SS_and_pars, solved && solved3 && solved_lyapunov else - return Σʸ₃, ΞΌΚΈβ‚‚, SS_and_pars + return Σʸ₃, ΞΌΚΈβ‚‚, SS_and_pars, solved && solved3 && solved_lyapunov end end diff --git a/test/neural_net_solution.jl b/test/neural_net_solution.jl index 8da2dd31..ee2231fb 100644 --- a/test/neural_net_solution.jl +++ b/test/neural_net_solution.jl @@ -284,18 +284,18 @@ end results = [] -for activation in [:relu, :gelu, :tanh] - for schedule in [:cos,:poly,:exp] - # for n_hidden in [256,128,384] - # for lr_start in [1e-3,5e-3,5e-4,1e-4] - # for lr_end in [1e-8,1e-9,1e-10,1e-11] - # for batchsize in [128,256,512]#,1024]#,2048] - for n_layers in [3,5,7] - for optimiser in [:adam,:adamw] - # for n_epochs in [100,150]#,300] - ## Create Neural Network - # n_hidden = max(256, n_vars * 2) - # n_hidden_small = max(256, n_vars * 2) +# for activation in [:relu, :gelu, :tanh] +# for schedule in [:cos,:poly,:exp] +# # for n_hidden in [256,128,384] +# # for lr_start in [1e-3,5e-3,5e-4,1e-4] +# # for lr_end in [1e-8,1e-9,1e-10,1e-11] +# # for batchsize in [128,256,512]#,1024]#,2048] +# for n_layers in [3,5,7] +# for optimiser in [:adam,:adamw] +# # for n_epochs in [100,150]#,300] +# ## Create Neural Network +# # n_hidden = max(256, n_vars * 2) +# # n_hidden_small = max(256, n_vars * 2) Random.seed!(6794) @@ -354,7 +354,7 @@ losses = [] for epoch in 1:n_epochs for (out,inp) in train_loader lss, grads = Flux.withgradient(neural_net_approx) do nn - sqrt(Flux.mse(out, nn(inp))) + sqrt(sum(logcosh, out - nn(inp)) / length(out)) end Flux.update!(optim, neural_net_approx, grads[1]) @@ -383,7 +383,8 @@ function calculate_loss(variablesβ‚β‚‹β‚β‚Ž::Matrix{R}, variablesβ‚β‚β‚Ž::Matrix{R}, shocksβ‚β‚“β‚Ž::Matrix{R}, model_parameters::Matrix{R}, - calibration_parameters::Matrix{R}) where R <: Real + calibration_parameters::Matrix{R}, + loss_func) where R <: Real cβ‚β‚‹β‚β‚Ž = variablesβ‚β‚‹β‚β‚Ž[1,:] gβ‚β‚‹β‚β‚Ž = variablesβ‚β‚‹β‚β‚Ž[2,:] kβ‚β‚‹β‚β‚Ž = variablesβ‚β‚‹β‚β‚Ž[3,:] @@ -426,19 +427,19 @@ function calculate_loss(variablesβ‚β‚‹β‚β‚Ž::Matrix{R}, loss = zero(eltype(inputs)) - loss += sum(abs2, min.(eps(eltype(inputs)), cβ‚β‚‹β‚β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), kβ‚β‚‹β‚β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), lβ‚β‚‹β‚β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), cβ‚β‚‹β‚β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), kβ‚β‚‹β‚β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), lβ‚β‚‹β‚β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), cβ‚β‚€β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), kβ‚β‚€β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), lβ‚β‚€β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), cβ‚β‚€β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), kβ‚β‚€β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), lβ‚β‚€β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), cβ‚β‚β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), kβ‚β‚β‚Ž)) - loss += sum(abs2, min.(eps(eltype(inputs)), lβ‚β‚β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), cβ‚β‚β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), kβ‚β‚β‚Ž)) + loss += sum(loss_func, min.(eps(eltype(inputs)), lβ‚β‚β‚Ž)) - loss *= 1000000000 + # loss *= 1000000000 cβ‚β‚‹β‚β‚Ž = max.(eps(eltype(inputs)), cβ‚β‚‹β‚β‚Ž) kβ‚β‚‹β‚β‚Ž = max.(eps(eltype(inputs)), kβ‚β‚‹β‚β‚Ž) @@ -453,12 +454,12 @@ function calculate_loss(variablesβ‚β‚‹β‚β‚Ž::Matrix{R}, lβ‚β‚β‚Ž = max.(eps(eltype(inputs)), lβ‚β‚β‚Ž) - loss += sum(abs2, @.(cβ‚β‚€β‚Ž ^ -Οƒ - Ξ² * cβ‚β‚β‚Ž ^ -Οƒ * ((Ξ± * zβ‚β‚β‚Ž * (kβ‚β‚€β‚Ž / lβ‚β‚β‚Ž) ^ (Ξ± - 1) + 1) - Ξ΄))) - loss += sum(abs2, @.(((ψ * cβ‚β‚€β‚Ž ^ Οƒ) / (1 - lβ‚β‚€β‚Ž) - wβ‚β‚€β‚Ž))) - loss += sum(abs2, @.((kβ‚β‚€β‚Ž - ((((1 - Ξ΄) * kβ‚β‚‹β‚β‚Ž + zβ‚β‚€β‚Ž * kβ‚β‚‹β‚β‚Ž ^ Ξ± * lβ‚β‚€β‚Ž ^ (1 - Ξ±)) - gβ‚β‚€β‚Ž) - cβ‚β‚€β‚Ž)))) - loss += sum(abs2, @.((wβ‚β‚€β‚Ž - zβ‚β‚€β‚Ž * (1 - Ξ±) * (kβ‚β‚‹β‚β‚Ž / lβ‚β‚€β‚Ž) ^ Ξ±))) - loss += sum(abs2, @.((zβ‚β‚€β‚Ž - ((1 - ρᢻ) + ρᢻ * zβ‚β‚‹β‚β‚Ž + ΟƒαΆ» * Ο΅αΆ»β‚β‚“β‚Ž)))) - loss += sum(abs2, @.((gβ‚β‚€β‚Ž - ((1 - ρᡍ) * αΈ‘ + ρᡍ * gβ‚β‚‹β‚β‚Ž + σᡍ * Ο΅α΅β‚β‚“β‚Ž)))) + loss += sum(loss_func, @.(cβ‚β‚€β‚Ž ^ -Οƒ - Ξ² * cβ‚β‚β‚Ž ^ -Οƒ * ((Ξ± * zβ‚β‚β‚Ž * (kβ‚β‚€β‚Ž / lβ‚β‚β‚Ž) ^ (Ξ± - 1) + 1) - Ξ΄))) + loss += sum(loss_func, @.(((ψ * cβ‚β‚€β‚Ž ^ Οƒ) / (1 - lβ‚β‚€β‚Ž) - wβ‚β‚€β‚Ž))) + loss += sum(loss_func, @.((kβ‚β‚€β‚Ž - ((((1 - Ξ΄) * kβ‚β‚‹β‚β‚Ž + zβ‚β‚€β‚Ž * kβ‚β‚‹β‚β‚Ž ^ Ξ± * lβ‚β‚€β‚Ž ^ (1 - Ξ±)) - gβ‚β‚€β‚Ž) - cβ‚β‚€β‚Ž)))) + loss += sum(loss_func, @.((wβ‚β‚€β‚Ž - zβ‚β‚€β‚Ž * (1 - Ξ±) * (kβ‚β‚‹β‚β‚Ž / lβ‚β‚€β‚Ž) ^ Ξ±))) + loss += sum(loss_func, @.((zβ‚β‚€β‚Ž - ((1 - ρᢻ) + ρᢻ * zβ‚β‚‹β‚β‚Ž + ΟƒαΆ» * Ο΅αΆ»β‚β‚“β‚Ž)))) + loss += sum(loss_func, @.((gβ‚β‚€β‚Ž - ((1 - ρᡍ) * αΈ‘ + ρᡍ * gβ‚β‚‹β‚β‚Ž + σᡍ * Ο΅α΅β‚β‚“β‚Ž)))) return loss end @@ -477,6 +478,8 @@ shock_grid = Float32.(shock_grid) +n_gradient_evals = 20000 + intermediate_layers = [Dense(n_hidden, n_hidden, act) for i in 1:n_layers] neural_net = Chain( Dense(n_inputs, n_hidden), intermediate_layers..., Dense(n_hidden, n_vars)) # # Parallel(vcat, Dense(n_hidden, 1, softplus), Dense(n_hidden, 1), Dense(n_hidden, 2, softplus), Dense(n_hidden, 2))) @@ -504,6 +507,36 @@ elseif schedule == :poly eta_sched = ParameterSchedulers.Stateful(Poly(start = lr_start, degree = 3, max_iter = n_epochs * n_batches)) end + + + +train_loader_nonlin = Flux.DataLoader((inputs, variables_scale, variables_bias, calibration_parameters), batchsize = size(inputs,2), shuffle = true) + +(inp, var_scale, var_bias, calib_pars) = collect(train_loader_nonlin)[1] +variablesβ‚β‚‹β‚β‚Ž = inp[1:n_vars,:] * scaling_factor .* var_scale .+ var_bias + +shocksβ‚β‚“β‚Ž = inp[n_vars+1:n_vars+n_shocks,:] + +normalised_parameters = inp[n_vars+n_shocks+1:n_vars+n_shocks+n_model_parameters,:] + +model_parameters = (normalised_parameters / Float32(sqrt(12)) .+ 0.5f0) .* Float32.(bounds_range) .+ Float32.(lower_bounds_par) + +normalised_variablesβ‚β‚€β‚Ž = neural_net(inp) + +variablesβ‚β‚€β‚Ž = normalised_variablesβ‚β‚€β‚Ž * scaling_factor .* var_scale .+ var_bias + +normalised_variablesβ‚β‚β‚Ž = neural_net(vcat(normalised_variablesβ‚β‚€β‚Ž, repeat(randn(Float32,2),1,size(inp,2)), normalised_parameters)) + +for shck in eachrow(shock_grid) + normalised_variablesβ‚β‚β‚Ž += neural_net(vcat(normalised_variablesβ‚β‚€β‚Ž, repeat(shck,1,size(inp,2)), normalised_parameters)) +end + +variablesβ‚β‚β‚Ž = normalised_variablesβ‚β‚β‚Ž / (size(shock_grid,1) + 1) * scaling_factor .* var_scale .+ var_bias + +sqrt(calculate_loss(variablesβ‚β‚‹β‚β‚Ž, variablesβ‚β‚€β‚Ž, variablesβ‚β‚β‚Ž, shocksβ‚β‚“β‚Ž, model_parameters, calib_pars, abs2) / length(variablesβ‚β‚€β‚Ž)) + + + start_time = time() losses = [] @@ -542,7 +575,7 @@ for epoch in 1:n_epochs push!(losses, lss) # logging, outside gradient context - if length(losses) % (n_gradient_evals Γ· 100) == 0 && length(losses) > (n_gradient_evals Γ· 100) println("Epoch: $epoch - Gradient calls: $(length(losses)) - Loss: $(sum(losses[end-(n_gradient_evals Γ· 100):end])/(n_gradient_evals Γ· 100)) - Ξ·: $(optim.layers[1].weight.rule.eta)") end + if length(losses) % (n_gradient_evals Γ· 100) == 0 && length(losses) > (n_gradient_evals Γ· 100) println("Epoch: $epoch/$n_epochs - Gradient calls: $(length(losses))/$n_gradient_evals - Loss: $(sum(losses[end-(n_gradient_evals Γ· 100):end])/(n_gradient_evals Γ· 100))") end # - Ξ·: $(optim.layers[1].weight.rule.eta)") end end end @@ -551,12 +584,12 @@ elapsed_time = end_time - start_time relnorm = norm(outputs - neural_net(inputs)) / norm(outputs) - push!(results,[lr_start,lr_end,activation,batchsize,n_epochs,n_hidden, n_layers,schedule, optimiser, elapsed_time, sum(losses[end-500:end])/(500), relnorm]) - println("Finished $(results[end])") - end - end - end - end + # push!(results,[lr_start,lr_end,activation,batchsize,n_epochs,n_hidden, n_layers,schedule, optimiser, elapsed_time, sum(losses[end-500:end])/(500), relnorm]) + # println("Finished $(results[end])") + # end + # end + # end + # end # end # end # end diff --git a/test/runtests.jl b/test/runtests.jl index 73419fbd..7dcdd013 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -207,9 +207,18 @@ if test_set == "plots" back_grad = Zygote.gradient(x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) end m = nothing GC.gc() @@ -229,9 +238,18 @@ if test_set == "plots" back_grad = Zygote.gradient(x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) end m = nothing GC.gc() @@ -249,9 +267,18 @@ if test_set == "plots" back_grad = Zygote.gradient(x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x, verbose = true), m.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) end m = nothing GC.gc() @@ -269,9 +296,16 @@ if test_set == "plots" back_grad = Zygote.gradient(x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) end m = nothing GC.gc() @@ -290,9 +324,18 @@ if test_set == "plots" back_grad = Zygote.gradient(x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) end m = nothing GC.gc() @@ -312,9 +355,18 @@ if test_set == "plots" back_grad = Zygote.gradient(x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(m, simulated_data(observables, :, :simulate), x), m.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) end m = nothing GC.gc() diff --git a/test/test_models.jl b/test/test_models.jl index 26c50899..7321f650 100644 --- a/test/test_models.jl +++ b/test/test_models.jl @@ -40,10 +40,10 @@ if !test_higher_order # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(3,1), x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = false), model.parameter_values) for i in 1:100 - local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) if isfinite(β„’.norm(fin_grad)) println("Finite differences worked after $i iterations") - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-4) + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) break end end @@ -81,7 +81,7 @@ if !test_higher_order # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) for i in 1:100 - local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) if isfinite(β„’.norm(fin_grad)) println("Finite differences worked after $i iterations") @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) @@ -120,9 +120,18 @@ if !test_higher_order back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), vcat(x,model.parameter_values[11:end]), verbose = true), model.parameter_values[1:10]) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-3),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), vcat(x,model.parameter_values[11:end]), verbose = true), model.parameter_values[1:10]) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-3),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), vcat(x,model.parameter_values[11:end]), verbose = true), model.parameter_values[1:10]) - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-2) + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-3),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), vcat(x,model.parameter_values[11:end])), model.parameter_values[1:10]) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-2) + break + end + end + + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-2) write_to_dynare_file(NAWM_EAUS_2008) translate_dynare_file("NAWM_EAUS_2008.mod") @@ -154,9 +163,18 @@ if !test_higher_order back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(Baxter_King_1993) translate_dynare_file("Baxter_King_1993.mod") @@ -185,9 +203,18 @@ if !test_higher_order back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(Ireland_2004) translate_dynare_file("Ireland_2004.mod") @@ -221,10 +248,10 @@ if !test_higher_order # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(3,1, max_range = 1e-5), x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = false), model.parameter_values) for i in 1:100 - local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-5), x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = false), model.parameter_values) + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-5), x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) if isfinite(β„’.norm(fin_grad)) println("Finite differences worked after $i iterations") - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-4) + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-5) break end end @@ -260,9 +287,18 @@ if !test_higher_order back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.forward_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-5) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-5) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-5) write_to_dynare_file(GNSS_2010) translate_dynare_file("GNSS_2010.mod") @@ -292,9 +328,18 @@ if !test_higher_order back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) - fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + # fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + + for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end + end - @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + # @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(Gali_Monacelli_2005_CITR) translate_dynare_file("Gali_Monacelli_2005_CITR.mod") @@ -331,7 +376,7 @@ if !test_higher_order # if !isfinite(β„’.norm(fin_grad)) for i in 1:100 - local fin_grad = FiniteDifferences.grad(FiniteDifferences.forward_fdm(4,1, max_range = 1e-5),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + local fin_grad = FiniteDifferences.grad(FiniteDifferences.forward_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) if isfinite(β„’.norm(fin_grad)) println("Finite differences worked after $i iterations") @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-4) @@ -379,9 +424,18 @@ get_loglikelihood(model, simulated_data(observables, :, :simulate), model.parame back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) +# fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + +for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end +end -@test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) +# @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(SGU_2003_debt_premium) translate_dynare_file("SGU_2003_debt_premium.mod") @@ -421,9 +475,18 @@ get_loglikelihood(model, simulated_data(observables, :, :simulate), model.parame back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) +# fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + +for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end +end -@test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) +# @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(JQ_2012_RBC) translate_dynare_file("JQ_2012_RBC.mod") @@ -466,9 +529,18 @@ get_loglikelihood(model, simulated_data(observables, :, :simulate), model.parame back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) +# fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -@test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) +for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end +end + +# @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(Ghironi_Melitz_2005) translate_dynare_file("Ghironi_Melitz_2005.mod") @@ -509,9 +581,18 @@ get_loglikelihood(model, simulated_data(observables, :, :simulate), model.parame back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) +# fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + +for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end +end -@test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) +# @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(Gali_2015_chapter_3_nonlinear) translate_dynare_file("Gali_2015_chapter_3_nonlinear.mod") @@ -546,9 +627,18 @@ get_loglikelihood(model, simulated_data(observables, :, :simulate), model.parame back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) +# fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + +for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-3) + break + end +end -@test isapprox(back_grad[1], fin_grad[1], rtol = 1e-3) +# @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-3) write_to_dynare_file(Caldara_et_al_2012) translate_dynare_file("Caldara_et_al_2012.mod") @@ -589,9 +679,18 @@ get_loglikelihood(model, simulated_data(observables, :, :simulate), verbose = tr back_grad = Zygote.gradient(x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) -fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) +# fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x, verbose = true), model.parameter_values) + +for i in 1:100 + local fin_grad = FiniteDifferences.grad(FiniteDifferences.central_fdm(4,1, max_range = 1e-4),x-> get_loglikelihood(model, simulated_data(observables, :, :simulate), x), model.parameter_values) + if isfinite(β„’.norm(fin_grad)) + println("Finite differences worked after $i iterations") + @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) + break + end +end -@test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) +# @test isapprox(back_grad[1], fin_grad[1], rtol = 1e-6) write_to_dynare_file(Aguiar_Gopinath_2007) translate_dynare_file("Aguiar_Gopinath_2007.mod") diff --git a/test/test_standalone_function.jl b/test/test_standalone_function.jl index e5977fe8..0df43b4d 100644 --- a/test/test_standalone_function.jl +++ b/test/test_standalone_function.jl @@ -362,40 +362,40 @@ end @testset verbose = true "NSSS and std derivatives" begin # derivatives of paramteres wrt standard deviations - stdev_deriv = ForwardDiff.jacobian(x -> get_statistics(RBC_CME, x, parameters = RBC_CME.parameters, standard_deviation = RBC_CME.var)[1], RBC_CME.parameter_values) - + stdev_deriv = ForwardDiff.jacobian(x -> get_statistics(RBC_CME, x, parameters = RBC_CME.parameters, standard_deviation = RBC_CME.var)[:standard_deviation], RBC_CME.parameter_values) + @test isapprox(stdev_deriv[5,6],1.3135107627695757, rtol = 1e-6) # derivatives of paramteres wrt non stochastic steady state - nsss_deriv = ForwardDiff.jacobian(x -> get_statistics(RBC_CME, x, parameters = RBC_CME.parameters, non_stochastic_steady_state = RBC_CME.var)[1], RBC_CME.parameter_values) + nsss_deriv = ForwardDiff.jacobian(x -> get_statistics(RBC_CME, x, parameters = RBC_CME.parameters, non_stochastic_steady_state = RBC_CME.var)[:non_stochastic_steady_state], RBC_CME.parameter_values) @test isapprox(nsss_deriv[4,1],3.296074644820076, rtol = 1e-6) end @testset verbose = true "Method of moments" begin # Method of moments: with varying steady states and derivatives of steady state numerical solved_vars - sol = Optim.optimize(x -> sum(abs2, get_statistics(RBC_CME, x, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]])[1] - [.21]), + sol = Optim.optimize(x -> sum(abs2, get_statistics(RBC_CME, x, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]])[:standard_deviation] - [.21]), [0], [1], [.16], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]])[1] ,[.21], atol = 1e-6) + @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]])[:standard_deviation] ,[.21], atol = 1e-6) # pruned second order - sol = Optim.optimize(x -> sum(abs2, get_statistics(RBC_CME, x, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order)[1] - [.21]), + sol = Optim.optimize(x -> sum(abs2, get_statistics(RBC_CME, x, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order)[:standard_deviation] - [.21]), [0], [1], [.16], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order)[1] ,[.21], atol = 1e-6) + @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order)[:standard_deviation] ,[.21], atol = 1e-6) # pruned third order - sol = Optim.optimize(x -> sum(abs2, get_statistics(RBC_CME, x, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order)[1] - [.21]), + sol = Optim.optimize(x -> sum(abs2, get_statistics(RBC_CME, x, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order)[:standard_deviation] - [.21]), [0], [1], [.16], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order)[1] ,[.21], atol = 1e-6) + @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = [RBC_CME.parameters[1]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order)[:standard_deviation] ,[.21], atol = 1e-6) # multiple parameter inputs and targets - sol = Optim.optimize(x -> sum(abs2,get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]])[1] - [.0008,.21]), + sol = Optim.optimize(x -> sum(abs2,get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]])[:standard_deviation] - [.0008,.21]), [0,0], [1,1], [.5,.16], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))), # Optim.Options(show_trace = true, @@ -404,10 +404,10 @@ end ; autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]])[1], [.0008,.21], atol=1e-6) + @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]])[:standard_deviation], [.0008,.21], atol=1e-6) # pruned second order - sol = Optim.optimize(x -> sum(abs2,get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_second_order)[1] - [.0008,.21]), + sol = Optim.optimize(x -> sum(abs2,get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_second_order)[:standard_deviation] - [.0008,.21]), [0,0], [1,1], [.5,.16], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))), # Optim.Options(show_trace = true, @@ -416,10 +416,10 @@ end ; autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_second_order)[1], [.0008,.21], atol=1e-6) + @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_second_order)[:standard_deviation], [.0008,.21], atol=1e-6) # pruned third order - sol = Optim.optimize(x -> sum(abs2,get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_third_order)[1] - [.0008,.21]), + sol = Optim.optimize(x -> sum(abs2,get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_third_order)[:standard_deviation] - [.0008,.21]), [0,0], [1,1], [.5,.16], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))), # Optim.Options(show_trace = true, @@ -428,53 +428,58 @@ end ; autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_third_order)[1], [.0008,.21], atol=1e-6) + @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[[6,1]], standard_deviation = RBC_CME.var[[2,5]], algorithm = :pruned_third_order)[:standard_deviation], [.0008,.21], atol=1e-6) # function combining targets for SS and St.Dev. function get_variances_optim(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:2], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]) - sum(abs2,[out[1][1] - 1.45, out[2][1] - .2]) + sum(abs2,[out[:non_stochastic_steady_state][1] - 1.45, out[:standard_deviation][1] - .2]) end out = get_variances_optim([.157,.999]) out = get_statistics(RBC_CME, [.157,.999], parameters = RBC_CME.parameters[1:2], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]) - sum(abs2,[out[1][1] - 1.4, out[2][1] - .21]) + sum(abs2,[out[:non_stochastic_steady_state][1] - 1.4, out[:standard_deviation][1] - .21]) sol = Optim.optimize(x -> get_variances_optim(x), [0,0.95], [1,1], [.16, .999], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:2], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]),[[1.45],[.2]],atol = 1e-6) + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:2], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]) + @test isapprox([out[:non_stochastic_steady_state],out[:standard_deviation]],[[1.45],[.2]],atol = 1e-6) # pruned second order function get_variances_optim_2nd(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:2], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order) - sum(abs2,[out[1][1] - 1.45, out[2][1] - .2]) + sum(abs2,[out[:mean][1] - 1.45, out[:standard_deviation][1] - .2]) end sol = Optim.optimize(x -> get_variances_optim_2nd(x), [0,0.95], [1,1], [.16, .999], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:2], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order),[[1.45],[.2]],atol = 1e-6) + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:2], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order) + + @test isapprox([out[:mean],out[:standard_deviation]],[[1.45],[.2]],atol = 1e-6) # pruned third order function get_variances_optim_3rd(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:2], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order) - sum(abs2,[out[1][1] - 1.45, out[2][1] - .2]) + sum(abs2,[out[:mean][1] - 1.45, out[:standard_deviation][1] - .2]) end sol = Optim.optimize(x -> get_variances_optim_3rd(x), [0,0.95], [1,1], [.16, .999], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox(get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:2], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order),[[1.45],[.2]],atol = 1e-6) + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:2], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order) + + @test isapprox([out[:mean],out[:standard_deviation]],[[1.45],[.2]],atol = 1e-6) # function combining targets for SS, St.Dev., and parameter function get_variances_optim2(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:3], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]) - sum(abs2,[out[1][1] - 1.45, out[2][1] - .2, x[3] - .02]) + sum(abs2,[out[:non_stochastic_steady_state][1] - 1.45, out[:standard_deviation][1] - .2, x[3] - .02]) end out = get_variances_optim2([.157,.999,.022]) @@ -482,14 +487,15 @@ end [0,0.95,0], [1,1,1], [.16, .999,.022], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox([get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]) - sol.minimizer[3]],[[1.45],[.2],.02],atol = 1e-6) + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], non_stochastic_steady_state = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]]) + + @test isapprox([out[:non_stochastic_steady_state],out[:standard_deviation],sol.minimizer[3]],[[1.45],[.2],.02],atol = 1e-6) # pruned second order function get_variances_optim2_2nd(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:3], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order) - sum(abs2,[out[1][1] - 1.45, out[2][1] - .2, x[3] - .02]) + sum(abs2,[out[:mean][1] - 1.45, out[:standard_deviation][1] - .2, x[3] - .02]) end out = get_variances_optim2([.157,.999,.022]) @@ -497,13 +503,14 @@ end [0,0.95,0], [1,1,1], [.16, .999,.022], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox([get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order) - sol.minimizer[3]],[[1.45],[.2],.02], atol = 1e-6) + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_second_order) + + @test isapprox([out[:mean], out[:standard_deviation], sol.minimizer[3]],[[1.45],[.2],.02], atol = 1e-6) # pruned third order function get_variances_optim2_3rd(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:3], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order) - sum(abs2,[out[1][1] - 1.45, out[2][1] - .2, x[3] - .02]) + sum(abs2,[out[:mean][1] - 1.45, out[:standard_deviation][1] - .2, x[3] - .02]) end out = get_variances_optim2([.157,.999,.022]) @@ -511,15 +518,16 @@ end [0,0.95,0], [1,1,1], [.16, .999,.022], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox([get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order) - sol.minimizer[3]],[[1.45],[.2],.02], atol = 1e-6) + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = [RBC_CME.var[6]], standard_deviation = [RBC_CME.var[5]], algorithm = :pruned_third_order) + + @test isapprox([out[:mean], out[:standard_deviation], sol.minimizer[3]],[[1.45],[.2],.02], atol = 1e-6) get_statistics(RBC_CME, RBC_CME.parameter_values[1:3], parameters = RBC_CME.parameters[1:3], non_stochastic_steady_state = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1) # function combining targets for SS/mean, St.Dev., autocorrelation and parameter function get_variances_optim3(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:4], non_stochastic_steady_state = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1) - sum(abs2,vcat(out[1] - [1.2,1.4], out[2] - [.013,.2], out[3][:,1] - [.955,.997], x[3] - .0215)) + sum(abs2,vcat(out[:non_stochastic_steady_state] - [1.2,1.4], out[:standard_deviation] - [.013,.2], out[:autocorrelation][:,1] - [.955,.997], x[3] - .0215)) end out = get_variances_optim3([.157,.999,.022,1.008]) @@ -527,8 +535,9 @@ end [0,0.95,0,0], [1,1,1,2], [.16, .999,.022,1], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox([get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], non_stochastic_steady_state = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1) - sol.minimizer[3]], + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], non_stochastic_steady_state = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1) + + @test isapprox([out[:non_stochastic_steady_state], out[:standard_deviation], out[:autocorrelation], sol.minimizer[3]], [[1.2,1.4],[.013,.2],[.955,.997][:,:],.0215], atol = 1e-3) @@ -536,30 +545,32 @@ end # pruned second order function get_variances_optim3_2nd(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:4], mean = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1, algorithm = :pruned_second_order) - sum(abs2,vcat(out[1] - [1.2,1.4], out[2] - [.013,.2], out[3][:,1] - [.955,.997], x[3] - .0215)) + sum(abs2,vcat(out[:mean] - [1.2,1.4], out[:standard_deviation] - [.013,.2], out[:autocorrelation][:,1] - [.955,.997], x[3] - .0215)) end sol = Optim.optimize(x -> get_variances_optim3_2nd(x), [0,0.95,0,0], [1,1,1,2], [.16, .999,.022,1], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox([get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1, algorithm = :pruned_second_order) - sol.minimizer[3]], + out = get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1, algorithm = :pruned_second_order) + + @test isapprox([out[:mean], out[:standard_deviation], out[:autocorrelation], sol.minimizer[3]], [[1.2,1.4],[.013,.2],[.955,.997][:,:],.0215], atol = 1e-3) # pruned third order function get_variances_optim3_3rd(x) out = get_statistics(RBC_CME, x, parameters = RBC_CME.parameters[1:4], mean = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1, algorithm = :pruned_third_order) - sum(abs2,vcat(out[1] - [1.2,1.4], out[2] - [.013,.2], out[3][:,1] - [.955,.997], x[3] - .0215)) + sum(abs2,vcat(out[:mean] - [1.2,1.4], out[:standard_deviation] - [.013,.2], out[:autocorrelation][:,1] - [.955,.997], x[3] - .0215)) end sol = Optim.optimize(x -> get_variances_optim3_3rd(x), [0,0.95,0,0], [1,1,1,2], [.16, .999,.022,1], Optim.Fminbox(Optim.LBFGS(linesearch = LineSearches.BackTracking(order = 3))); autodiff = :forward) - @test isapprox([get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1, algorithm = :pruned_third_order) - sol.minimizer[3]], + get_statistics(RBC_CME, sol.minimizer, parameters = RBC_CME.parameters[1:3], mean = RBC_CME.var[[4,6]], standard_deviation = RBC_CME.var[4:5], autocorrelation = RBC_CME.var[[3,5]], autocorrelation_periods = 1, algorithm = :pruned_third_order) + + @test isapprox([out[:mean], out[:standard_deviation], out[:autocorrelation], sol.minimizer[3]], [[1.2,1.4],[.013,.2],[.955,.997][:,:],.0215], atol = 1e-3) end