From 0e63a20360b3650747bc24cefe3f901cef9cf817 Mon Sep 17 00:00:00 2001 From: thorek1 Date: Mon, 18 Sep 2023 23:00:36 +0200 Subject: [PATCH] no dense array in higher order sol --- src/MacroModelling.jl | 220 +++++++++--------------------------------- 1 file changed, 45 insertions(+), 175 deletions(-) diff --git a/src/MacroModelling.jl b/src/MacroModelling.jl index 57f71f09..4971655e 100644 --- a/src/MacroModelling.jl +++ b/src/MacroModelling.jl @@ -124,6 +124,37 @@ Base.show(io::IO, ๐“‚::โ„ณ) = println(io, +function jacobian_wrt_values(A::SparseMatrixCSC{T}, B::SparseMatrixCSC{T}) where T + # does this without creating dense arrays: reshape(permutedims(reshape(โ„’.I - โ„’.kron(A, B) ,size(B,1), size(A,1), size(A,1), size(B,1)), [2, 3, 4, 1]), size(A,1) * size(B,1), size(A,1) * size(B,1)) + + # Compute the Kronecker product and subtract from identity + C = โ„’.I - โ„’.kron(A, B) + + # Extract the row, column, and value indices from C + rows, cols, vals = findnz(C) + + # Lists to store the 2D indices after the operations + final_rows = zeros(Int,length(rows)) + final_cols = zeros(Int,length(rows)) + + Threads.@threads for i = 1:length(rows) + # Convert the 1D row index to its 2D components + i1, i2 = divrem(rows[i]-1, size(B,1)) .+ 1 + + # Convert the 1D column index to its 2D components + j1, j2 = divrem(cols[i]-1, size(A,1)) .+ 1 + + # Convert the 4D index (i1, j2, j1, i2) to a 2D index in the final matrix + final_col, final_row = divrem(Base._sub2ind((size(A,1), size(A,1), size(B,1), size(B,1)), i1, j2, j1, i2) - 1, size(A,1) * size(B,1)) .+ 1 + + # Store the 2D indices + final_rows[i] = final_row + final_cols[i] = final_col + end + + return sparse(final_rows, final_cols, vals, size(A,1) * size(B,1), size(A,1) * size(B,1)) +end + function reconstruct_sparse_matrix(sp_vector::SparseVector{T, Int}, dims::Tuple{Int, Int}) where T # Function to reconstruct the matrix from the vector and dimensions @@ -2407,8 +2438,8 @@ function solve!(๐“‚::โ„ณ; if (:second_order == algorithm && :second_order โˆˆ ๐“‚.solution.outdated_algorithms) || - (any([:third_order,:pruned_third_order] .โˆˆ ([algorithm],)) && - any([:third_order,:pruned_third_order] .โˆˆ (๐“‚.solution.outdated_algorithms,))) + (any([:third_order] .โˆˆ ([algorithm],)) && + any([:third_order] .โˆˆ (๐“‚.solution.outdated_algorithms,))) stochastic_steady_state, converged, SS_and_pars, solution_error, โˆ‡โ‚, โˆ‡โ‚‚, ๐’โ‚, ๐’โ‚‚ = calculate_second_order_stochastic_steady_state(๐“‚.parameter_values, ๐“‚, verbose = verbose) @@ -3544,13 +3575,15 @@ function riccati_forward(โˆ‡โ‚::Matrix{โ„ฑ.Dual{Z,S,N}}; T::timings, explosive: end -riccati_AD = ID.ImplicitFunction(riccati_forward, +riccati_AD_direct = ID.ImplicitFunction(riccati_forward, riccati_conditions; linear_solver = ID.DirectLinearSolver()) +riccati_AD = ID.ImplicitFunction(riccati_forward, riccati_conditions) # doesnt converge!? + function calculate_first_order_solution(โˆ‡โ‚::Matrix{S}; T::timings, explosive::Bool = false)::Tuple{Matrix{S},Bool} where S <: Real - A, solved = riccati_AD(โˆ‡โ‚; T = T, explosive = explosive) + A, solved = riccati_AD_direct(โˆ‡โ‚; T = T, explosive = explosive) if !solved return hcat(A, zeros(size(A,1),T.nExo)), solved @@ -4292,74 +4325,6 @@ end -# function solve_sylvester_equation_forward(ABC::SparseVector{Float64, Int64}; -# dims::Vector{Tuple{Int,Int}}, -# sparse_output::Bool = false, -# solver::Symbol = :gmres) - -# lenA = dims[1][1] * dims[1][2] - -# A = reconstruct_sparse_matrix(ABC[1 : lenA], dims[1]) - -# if length(dims) == 3 -# lenB = dims[2][1] * dims[2][2] -# B = reconstruct_sparse_matrix(ABC[lenA .+ (1 : lenB)], dims[2]) -# C = reconstruct_sparse_matrix(ABC[lenA + lenB + 1 : end], dims[3]) -# elseif length(dims) == 2 -# B = A' -# C = reconstruct_sparse_matrix(ABC[lenA + 1 : end], dims[2]) -# symm = true -# end - -# A = ThreadedSparseArrays.ThreadedSparseMatrixCSC(A) - -# if solver โˆˆ [:gmres, :bicgstab] -# function sylvester!(sol,๐ฑ) -# ๐— = reshape(๐ฑ, size(C)) -# sol .= vec(A * ๐— * B - ๐—) -# return sol -# end - -# sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) - -# if solver == :gmres -# ๐‚, info = Krylov.gmres(sylvester, [vec(C);]) -# elseif solver == :bicgstab -# ๐‚, info = Krylov.bicgstab(sylvester, [vec(C);]) -# end -# solved = info.solved -# elseif solver == :doubling && symm -# iter = 1 -# change = 1 -# ๐‚ = collect(-C) -# ๐‚ยน = collect(-C) -# while change > eps() && iter < 100 -# ๐‚ยน = A * ๐‚ * A' + ๐‚ -# A = A * A -# droptol!(A, eps()) -# if iter > 10 -# change = maximum(abs, ๐‚ยน - ๐‚) -# end -# ๐‚ = ๐‚ยน -# iter += 1 -# end -# solved = change < eps() -# elseif solver == :speedmapping -# soll = speedmapping(collect(-C); m! = (X, x) -> X .= A * x * B - C, stabilize = true) - -# ๐‚ = soll.minimizer - -# solved = soll.converged -# end - -# return sparse_output ? sparse(reshape(๐‚, size(C))) : reshape(๐‚, size(C)), solved # return info on convergence -# end - - - - - - function solve_sylvester_equation_forward(ABC::Vector{Float64}; coords::Vector{Tuple{Vector{Int}, Vector{Int}}}, dims::Vector{Tuple{Int,Int}}, @@ -4458,55 +4423,6 @@ end -# function solve_sylvester_equation_forward(ABC::Vector{Float64}; -# dims::Vector{Tuple{Int,Int}}, -# sparse_output::Bool = false, -# solver::Symbol = :gmres) - -# lenA = dims[1][1] * dims[1][2] - -# A = reshape(ABC[1 : lenA], dims[1]) - -# if length(dims) == 3 -# lenB = dims[2][1] * dims[2][2] -# B = reshape(ABC[lenA .+ (1 : lenB)], dims[2]) -# C = reshape(ABC[lenA + lenB + 1 : end], dims[3]) -# elseif length(dims) == 2 -# B = A' -# C = reshape(ABC[lenA + 1 : end], dims[2]) -# end - -# function sylvester!(sol,๐ฑ) -# ๐— = reshape(๐ฑ, size(C)) -# sol .= vec(A * ๐— * B - ๐—) -# return sol -# end - -# sylvester = LinearOperators.LinearOperator(Float64, length(C), length(C), true, true, sylvester!) - -# if solver โˆˆ [:gmres, :bicgstab] -# if solver == :gmres -# ๐‚, info = Krylov.gmres(sylvester, [vec(C);]) -# elseif solver == :bicgstab -# ๐‚, info = Krylov.bicgstab(sylvester, [vec(C);]) -# end - -# elseif solver == :speedmapping -# soll = speedmapping(collect(-C); m! = (X, x) -> X .= A * x * B - C, stabilize = true) - -# ๐‚ = soll.minimizer - -# info = soll.converged -# end - -# if !info.solved && !(solver == :gmres) -# ๐‚, info = Krylov.gmres(sylvester, [vec(C);]) -# end - -# return sparse_output ? sparse(reshape(๐‚, size(C))) : reshape(๐‚, size(C)), info.solved # return info on convergence -# end - - function solve_sylvester_equation_conditions(ABC::Vector{<: Real}, X::AbstractMatrix{<: Real}, solved::Bool; @@ -4550,53 +4466,6 @@ end -# function solve_sylvester_equation_conditions(ABC::SparseVector{<: Real, Int64}, -# X::AbstractMatrix{<: Real}, -# solved::Bool; -# dims::Vector{Tuple{Int,Int}}, -# sparse_output::Bool = false, -# solver::Symbol = :gmres) - -# lenA = dims[1][1] * dims[1][2] - -# A = reconstruct_sparse_matrix(ABC[1 : lenA], dims[1]) - -# if length(dims) == 3 -# lenB = dims[2][1] * dims[2][2] -# B = reconstruct_sparse_matrix(ABC[lenA .+ (1 : lenB)], dims[2]) -# C = reconstruct_sparse_matrix(ABC[lenA + lenB + 1 : end], dims[3]) -# elseif length(dims) == 2 -# B = A' -# C = reconstruct_sparse_matrix(ABC[lenA + 1 : end], dims[2]) -# end - -# A * X * B - C - X -# end - -# function solve_sylvester_equation_conditions(ABC::Vector{<: Real}, -# X::AbstractMatrix{<: Real}, solved::Bool; -# dims::Vector{Tuple{Int,Int}}, -# sparse_output::Bool = false, -# solver::Symbol = :gmres) - -# lenA = dims[1][1] * dims[1][2] - -# A = reshape(ABC[1 : lenA], dims[1]) - -# if length(dims) == 3 -# lenB = dims[2][1] * dims[2][2] -# B = reshape(ABC[lenA .+ (1 : lenB)], dims[2]) -# C = reshape(ABC[lenA + lenB + 1 : end], dims[3]) -# elseif length(dims) == 2 -# B = A' -# C = reshape(ABC[lenA + 1 : end], dims[2]) -# end - -# A * X * B - C - X -# end - - - function solve_sylvester_equation_forward(abc::Vector{โ„ฑ.Dual{Z,S,N}}; coords::Vector{Tuple{Vector{Int}, Vector{Int}}}, dims::Vector{Tuple{Int,Int}}, @@ -4616,7 +4485,7 @@ function solve_sylvester_equation_forward(abc::Vector{โ„ฑ.Dual{Z,S,N}}; lengthA = length(coords[1][1]) vA = ABC[1:lengthA] - A = sparse(coords[1]...,vA,dims[1]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + A = sparse(coords[1]...,vA,dims[1]...)# |> ThreadedSparseArrays.ThreadedSparseMatrixCSC # C = reshape(ABC[lengthA+1:end],dims[2]...) B = A' @@ -4634,8 +4503,8 @@ function solve_sylvester_equation_forward(abc::Vector{โ„ฑ.Dual{Z,S,N}}; vB = ABC[lengthA .+ (1:lengthB)] # vC = ABC[lengthA + lengthB + 1:end] - A = sparse(coords[1]...,vA,dims[1]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC - B = sparse(coords[2]...,vB,dims[2]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + A = sparse(coords[1]...,vA,dims[1]...)# |> ThreadedSparseArrays.ThreadedSparseMatrixCSC + B = sparse(coords[2]...,vB,dims[2]...)# |> ThreadedSparseArrays.ThreadedSparseMatrixCSC # C = sparse(coords[3]...,vC,dims[3]...) |> ThreadedSparseArrays.ThreadedSparseMatrixCSC jacobian_A = โ„’.kron(-val * B, โ„’.I(size(A,1))) @@ -4643,7 +4512,7 @@ function solve_sylvester_equation_forward(abc::Vector{โ„ฑ.Dual{Z,S,N}}; b = hcat(jacobian_A', jacobian_B, โ„’.I(length(val))) - partials = zeros(dims[1][1] * dims[1][2] + dims[2][1] * dims[2][2] + dims[3][1] * dims[3][2], size(partial_values,2)) + partials = spzeros(dims[1][1] * dims[1][2] + dims[2][1] * dims[2][2] + dims[3][1] * dims[3][2], size(partial_values,2)) partials[vcat( coords[1][1] + (coords[1][2] .- 1) * dims[1][1], coords[2][1] + (coords[2][2] .- 1) * dims[2][1] .+ dims[1][1] * dims[1][2], @@ -4664,12 +4533,13 @@ function solve_sylvester_equation_forward(abc::Vector{โ„ฑ.Dual{Z,S,N}}; # get J(f, vs) * ps (cheating). Write your custom rule here. This used to be the conditions but here they are analytically derived. - # a = reshape(permutedims(reshape(โ„’.I - โ„’.kron(A, B) ,size(B,1), size(A,1), size(A,1), size(B,1)), [2, 3, 4, 1]), size(A,1) * size(B,1), size(A,1) * size(B,1)) + a = jacobian_wrt_values(A, B) + droptol!(a,eps()) reshape_matmul = LinearOperators.LinearOperator(Float64, size(b,1) * size(partials,2), size(b,1) * size(partials,2), false, false, (sol,๐ฑ) -> begin - ๐— = reshape(๐ฑ, (size(b,1),size(partials,2))) - sol .= vec(reshape(permutedims(reshape(โ„’.I - โ„’.kron(A, B) ,size(B,1), size(A,1), size(A,1), size(B,1)), [2, 3, 4, 1]), size(A,1) * size(B,1), size(A,1) * size(B,1)) * ๐—) + ๐— = reshape(๐ฑ, (size(b,1),size(partials,2))) |> sparse + sol .= vec(a * ๐—) return sol end)