-
Notifications
You must be signed in to change notification settings - Fork 3
/
tweet-search-sentiment.rb
199 lines (158 loc) · 5.64 KB
/
tweet-search-sentiment.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#############################################################################
# filename: tweet-search-sentiment.rb
# author: Chris MacLellan
# desc: This program will ask for a search term, search twitter for it, then
# perform sentiment analysis of the tweets.
#
#############################################################################
require 'rubygems'
require 'json'
require 'net/http'
require 'uri'
#########################################################################
# Function takes a search term and uses the twitter search url to access
# tweets with the given search term. It then converts these tweets from
# JSON into a ruby hash, which is returned.
#
# search_term:string -- term to search twitter for.
# return:hash -- discovered tweets in a hash.
#########################################################################
def get_tweet_hash( search_term, max_results = 100)
results_per_page = 100
results_per_page = max_results if max_results < 100
done = false
page = 1
num_results = 0
output = []
# Encode search term for URL
search_term = URI.escape(search_term)
while (not done)
# Construct the search URL
search_url = "http://search.twitter.com/search.json?q=#{search_term}&rpp=#{results_per_page}&page=#{page}"
# prints out the url being used... useful for debugging.
puts search_url
# Request the tweets from twitter search. I got the url for this here: http://dev.twitter.com/pages/using_search
resp = Net::HTTP.get_response(URI.parse(search_url))
# Parse the data into from JSON into ruby hash.
data = resp.body
result = JSON.parse(data)
# Raise exception if there is an error getting data from twitter
if result.has_key? 'Error'
raise "Error assessing tweet data"
end
if result['results']
# trims off any amount over the max_results
if max_results < (output.size + result['results'].size)
cutpoint = max_results - output.size
puts cutpoint
puts result['results'][0,cutpoint]
for tweet in result['results'][0,cutpoint]
output.push(tweet)
end
else
for tweet in result['results']
output.push(tweet)
end
end
end
page += 1
if output.size >= max_results or result['results'].size == 0
done = true
end
end
return output
end
#####################################################################
# load the specified sentiment file into a hash
#
# filename:string -- name of file to load
# sentihash:hash -- hash to load data into
# return:hash -- hash with data loaded
#####################################################################
def load_senti_file (filename)
sentihash = {}
# load the word file
file = File.new(filename)
while (line = file.gets)
parsedline = line.chomp.split("\t")
sentiscore = parsedline[0]
text = parsedline[1]
sentihash[text] = sentiscore.to_f
end
file.close
return sentihash
end
#####################################################################
# Function analyzes the sentiment of a tweet. Very basic. This just
# imports a list of words with sentiment scores from file and uses
# these to perform the analysis.
#
# tweet: string -- string to analyze the sentiment of
# return: int -- 0 negative, 1 means neutral, and 2 means positive
#####################################################################
def analyze_sentiment ( text )
# load the word file (words -> sentiment score)
sentihash = load_senti_file ('sentiwords.txt')
# load the symbol file (smiles and ascii symbols -> sentiment score)
sentihash.merge!(load_senti_file ('sentislang.txt'))
# tokenize the text
tokens = text.split
# Check the sentiment value of each token against the sentihash.
# Since each word has a positive or negative numeric sentiment value
# we can just sum the values of all the sentimental words. If it is
# positive then we say the tweet is positive. If it is negative we
# say the tweet is negative.
sentiment_total = 0.0
for token in tokens do
sentiment_value = sentihash[token]
if sentiment_value
# for debugging purposes
#puts "#{token} => #{sentiment_value}"
sentiment_total += sentiment_value
end
end
# threshold for classification
threshold = 0.0
# if less then the negative threshold classify negative
if sentiment_total < (-1 * threshold)
return 0
# if greater then the positive threshold classify positive
elsif sentiment_total > threshold
return 2
# otherwise classify as neutral
else
return 1
end
end
def get_search_term_and_analyze
# Get search term from user
print "Enter search term: "
search_term = gets.chomp
# Get the hash from twitter using the specified search term
puts "Accessing tweets using search term: #{search_term}..."
result = get_tweet_hash( search_term, 1000)
negative = 0
neutral = 0
positive = 0
for tweet in result do
# puts "From #{tweet['from_user']}: #{tweet['text']}"
sentiment = analyze_sentiment( tweet['text'] )
if sentiment == 0
negative += 1
elsif sentiment == 1
neutral += 1
elsif sentiment == 2
positive += 1
end
end
puts "Number of tweets analyzed: #{result.size}"
puts "Negative tweets: #{negative}"
puts "Neutral tweets: #{neutral}"
puts "Positive tweets: #{positive}"
if positive >= negative
puts "Search term \"#{search_term}\" had a #{((100.0 * positive) / (positive+negative)).round(0)}\% positive sentiment."
else
puts "Search term \"#{search_term}\" had a #{((100.0 * negative) / (positive+negative)).round(0)}\% negative sentiment."
end
end
get_search_term_and_analyze