-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathinterface.py
220 lines (197 loc) · 10.5 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
from typing import List
import cv2
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from .dataset import get_transforms
from .model import Encoder, Decoder
from .chemistry import convert_graph_to_smiles
from .tokenizer import get_tokenizer
BOND_TYPES = ["", "single", "double", "triple", "aromatic", "solid wedge", "dashed wedge"]
def safe_load(module, module_states):
def remove_prefix(state_dict):
return {k.replace('module.', ''): v for k, v in state_dict.items()}
missing_keys, unexpected_keys = module.load_state_dict(remove_prefix(module_states), strict=False)
return
class MolScribe:
def __init__(self, model_path, device=None, num_workers=1):
"""
MolScribe Interface
:param model_path: path of the model checkpoint.
:param device: torch device, defaults to be CPU.
:param multiprocessing_enabled: uses multiprocessing to parallelize parts of the inference when enabled, defaults to False.
"""
model_states = torch.load(model_path, map_location=torch.device('cpu'))
args = self._get_args(model_states['args'])
if device is None:
device = torch.device('cpu')
self.device = device
self.tokenizer = get_tokenizer(args)
self.encoder, self.decoder = self._get_model(args, self.tokenizer, self.device, model_states)
self.transform = get_transforms(args.input_size, augment=False)
self.num_workers = num_workers
def _get_args(self, args_states=None):
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--encoder', type=str, default='swin_base')
parser.add_argument('--decoder', type=str, default='transformer')
parser.add_argument('--trunc_encoder', action='store_true') # use the hidden states before downsample
parser.add_argument('--no_pretrained', action='store_true')
parser.add_argument('--use_checkpoint', action='store_true', default=True)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--embed_dim', type=int, default=256)
parser.add_argument('--enc_pos_emb', action='store_true')
group = parser.add_argument_group("transformer_options")
group.add_argument("--dec_num_layers", help="No. of layers in transformer decoder", type=int, default=6)
group.add_argument("--dec_hidden_size", help="Decoder hidden size", type=int, default=256)
group.add_argument("--dec_attn_heads", help="Decoder no. of attention heads", type=int, default=8)
group.add_argument("--dec_num_queries", type=int, default=128)
group.add_argument("--hidden_dropout", help="Hidden dropout", type=float, default=0.1)
group.add_argument("--attn_dropout", help="Attention dropout", type=float, default=0.1)
group.add_argument("--max_relative_positions", help="Max relative positions", type=int, default=0)
parser.add_argument('--continuous_coords', action='store_true')
parser.add_argument('--compute_confidence', action='store_true')
# Data
parser.add_argument('--input_size', type=int, default=384)
parser.add_argument('--vocab_file', type=str, default=None)
parser.add_argument('--coord_bins', type=int, default=64)
parser.add_argument('--sep_xy', action='store_true', default=True)
args = parser.parse_args([])
if args_states:
for key, value in args_states.items():
args.__dict__[key] = value
return args
def _get_model(self, args, tokenizer, device, states):
encoder = Encoder(args, pretrained=False)
args.encoder_dim = encoder.n_features
decoder = Decoder(args, tokenizer)
safe_load(encoder, states['encoder'])
safe_load(decoder, states['decoder'])
# print(f"Model loaded from {load_path}")
encoder.to(device)
decoder.to(device)
encoder.eval()
decoder.eval()
return encoder, decoder
def predict_images(self, input_images: List, return_atoms_bonds=False, return_confidence=False, batch_size=16):
device = self.device
predictions = []
self.decoder.compute_confidence = return_confidence
for idx in range(0, len(input_images), batch_size):
batch_images = input_images[idx:idx+batch_size]
images = [self.transform(image=image, keypoints=[])['image'] for image in batch_images]
images = torch.stack(images, dim=0).to(device)
with torch.no_grad():
features, hiddens = self.encoder(images)
batch_predictions = self.decoder.decode(features, hiddens)
predictions += batch_predictions
smiles = [pred['chartok_coords']['smiles'] for pred in predictions]
node_coords = [pred['chartok_coords']['coords'] for pred in predictions]
node_symbols = [pred['chartok_coords']['symbols'] for pred in predictions]
edges = [pred['edges'] for pred in predictions]
smiles_list, molblock_list, r_success = convert_graph_to_smiles(
node_coords, node_symbols, edges, images=input_images, num_workers=self.num_workers)
outputs = []
for smiles, molblock, pred in zip(smiles_list, molblock_list, predictions):
pred_dict = {"smiles": smiles, "molfile": molblock}
if return_confidence:
pred_dict["confidence"] = pred["overall_score"]
if return_atoms_bonds:
coords = pred['chartok_coords']['coords']
symbols = pred['chartok_coords']['symbols']
# get atoms info
atom_list = []
for i, (symbol, coord) in enumerate(zip(symbols, coords)):
atom_dict = {"atom_symbol": symbol, "x": coord[0], "y": coord[1]}
if return_confidence:
atom_dict["confidence"] = pred['chartok_coords']['atom_scores'][i]
atom_list.append(atom_dict)
pred_dict["atoms"] = atom_list
# get bonds info
bond_list = []
num_atoms = len(symbols)
for i in range(num_atoms-1):
for j in range(i+1, num_atoms):
bond_type_int = pred['edges'][i][j]
if bond_type_int != 0:
bond_type_str = BOND_TYPES[bond_type_int]
bond_dict = {"bond_type": bond_type_str, "endpoint_atoms": (i, j)}
if return_confidence:
bond_dict["confidence"] = pred["edge_scores"][i][j]
bond_list.append(bond_dict)
pred_dict["bonds"] = bond_list
outputs.append(pred_dict)
return outputs
def predict_image(self, image, return_atoms_bonds=False, return_confidence=False):
return self.predict_images([
image], return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)[0]
def predict_image_files(self, image_files: List, return_atoms_bonds=False, return_confidence=False):
input_images = []
for path in image_files:
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
input_images.append(image)
return self.predict_images(
input_images, return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)
def predict_image_file(self, image_file: str, return_atoms_bonds=False, return_confidence=False):
return self.predict_image_files(
[image_file], return_atoms_bonds=return_atoms_bonds, return_confidence=return_confidence)[0]
def draw_prediction(self, prediction, image, notebook=False):
if "atoms" not in prediction or "bonds" not in prediction:
raise ValueError("atoms and bonds information are not provided.")
h, w, _ = image.shape
h, w = np.array([h, w]) * 400 / max(h, w)
image = cv2.resize(image, (int(w), int(h)))
fig, ax = plt.subplots(1, 1)
ax.axis('off')
ax.set_xlim(-0.05 * w, w * 1.05)
ax.set_ylim(1.05 * h, -0.05 * h)
plt.imshow(image, alpha=0.)
x = [a['x'] * w for a in prediction['atoms']]
y = [a['y'] * h for a in prediction['atoms']]
markersize = min(w, h) / 3
plt.scatter(x, y, marker='o', s=markersize, color='lightskyblue', zorder=10)
for i, atom in enumerate(prediction['atoms']):
symbol = atom['atom_symbol'].lstrip('[').rstrip(']')
plt.annotate(symbol, xy=(x[i], y[i]), ha='center', va='center', color='black', zorder=100)
for bond in prediction['bonds']:
u, v = bond['endpoint_atoms']
x1, y1, x2, y2 = x[u], y[u], x[v], y[v]
bond_type = bond['bond_type']
if bond_type == 'single':
color = 'tab:green'
ax.plot([x1, x2], [y1, y2], color, linewidth=4)
elif bond_type == 'aromatic':
color = 'tab:purple'
ax.plot([x1, x2], [y1, y2], color, linewidth=4)
elif bond_type == 'double':
color = 'tab:green'
ax.plot([x1, x2], [y1, y2], color=color, linewidth=7)
ax.plot([x1, x2], [y1, y2], color='w', linewidth=1.5, zorder=2.1)
elif bond_type == 'triple':
color = 'tab:green'
x1s, x2s = 0.8 * x1 + 0.2 * x2, 0.2 * x1 + 0.8 * x2
y1s, y2s = 0.8 * y1 + 0.2 * y2, 0.2 * y1 + 0.8 * y2
ax.plot([x1s, x2s], [y1s, y2s], color=color, linewidth=9)
ax.plot([x1, x2], [y1, y2], color='w', linewidth=5, zorder=2.05)
ax.plot([x1, x2], [y1, y2], color=color, linewidth=2, zorder=2.1)
else:
length = 10
width = 10
color = 'tab:green'
if bond_type == 'solid wedge':
ax.annotate('', xy=(x1, y1), xytext=(x2, y2),
arrowprops=dict(color=color, width=3, headwidth=width, headlength=length), zorder=2)
else:
ax.annotate('', xy=(x2, y2), xytext=(x1, y1),
arrowprops=dict(color=color, width=3, headwidth=width, headlength=length), zorder=2)
fig.tight_layout()
if not notebook:
canvas = FigureCanvasAgg(fig)
canvas.draw()
buf = canvas.buffer_rgba()
result_image = np.asarray(buf)
plt.close(fig)
return result_image