Skip to content

Latest commit

 

History

History
40 lines (30 loc) · 3.28 KB

CodeBook.md

File metadata and controls

40 lines (30 loc) · 3.28 KB

Getting and Cleaning Data Project

Author: Nuno Roberto

Description

Additional information about the variables, data and transformations used in the course project for the Johns Hopkins Getting and Cleaning Data course.

Source Data

Data + Description can be found here UCI Machine Learning Repository

Data Set Information

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.

Attribute Information

For each record in the dataset it is provided:

  • Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
  • Triaxial Angular velocity from the gyroscope.
  • A 561-feature vector with time and frequency domain variables.
  • Its activity label.
  • An identifier of the subject who carried out the experiment.

Files included in the dataset

  • 'README.txt'
  • 'features_info.txt': Shows information about the variables used on the feature vector.
  • 'features.txt': List of all features.
  • 'activity_labels.txt': Links the class labels with their activity name.
  • 'train/X_train.txt': Training set.
  • 'train/y_train.txt': Training labels.
  • 'test/X_test.txt': Test set.
  • 'test/y_test.txt': Test labels.

The following files are available for the train and test data. Their descriptions are equivalent.

  • 'train/subject_train.txt': Each row identifies the subject who performed the activity for each window sample. Its range is from 1 to 30.
  • 'train/Inertial Signals/total_acc_x_train.txt': The acceleration signal from the smartphone accelerometer X axis in standard gravity units 'g'. Every row shows a 128 element vector. The same description applies for the 'total_acc_x_train.txt' and 'total_acc_z_train.txt' files for the Y and Z axis.
  • 'train/Inertial Signals/body_acc_x_train.txt': The body acceleration signal obtained by subtracting the gravity from the total acceleration.
  • 'train/Inertial Signals/body_gyro_x_train.txt': The angular velocity vector measured by the gyroscope for each window sample. The units are radians/second.