From 36f18388e9380f9099a45dc687e8d87bddb94ffd Mon Sep 17 00:00:00 2001 From: Florent Hivert Date: Fri, 31 Aug 2018 13:42:36 +0200 Subject: [PATCH] monalg for finmap v1.1 (#20) --- .travis.yml | 3 - opam | 2 +- src/monalg.v | 249 +++++++++++++++++++++++++++----------------------- src/xfinmap.v | 61 ------------- 4 files changed, 138 insertions(+), 177 deletions(-) diff --git a/.travis.yml b/.travis.yml index c002606..1920866 100644 --- a/.travis.yml +++ b/.travis.yml @@ -13,7 +13,6 @@ env: - COMPILER="system" # Main test targets matrix: - - COQ="8.6.1" MATHCOMP="1.6.1" - COQ="8.6.1" MATHCOMP="1.7.0" - COQ="8.7.2" MATHCOMP="1.7.0" - COQ="8.8.1" MATHCOMP="1.7.0" @@ -21,8 +20,6 @@ env: - COQ="dev" MATHCOMP="1.7.0" - COQ="dev" MATHCOMP="dev" matrix: - allow_failures: - - env: COQ="8.6.1" MATHCOMP="1.6.1" fast_finish: true install: - sudo add-apt-repository --yes ppa:avsm/ppa diff --git a/opam b/opam index cfbeb7f..4d81b1f 100644 --- a/opam +++ b/opam @@ -19,7 +19,7 @@ depends: [ "coq-mathcomp-ssreflect" { (>= "1.6" | = "dev") } "coq-mathcomp-algebra" { (>= "1.6" | = "dev") } "coq-mathcomp-bigenough" {>= "1.0.0" & < "1.1.0~"} - "coq-mathcomp-finmap" {>= "1.0.0" & < "1.1.0~"} + "coq-mathcomp-finmap" {>= "1.1.0" & < "1.2.0~"} ] tags: [ "keyword:multinomials" diff --git a/src/monalg.v b/src/monalg.v index 98f7b5e..bb7cedb 100644 --- a/src/monalg.v +++ b/src/monalg.v @@ -42,8 +42,8 @@ Reserved Notation "{ 'malg' K }" (at level 0, K at level 2, format "{ 'malg' K }"). Reserved Notation "[ 'malg' g ]" (at level 0, g at level 2, format "[ 'malg' g ]"). -Reserved Notation "[ 'malg' x : aT => E ]" - (at level 0, x ident, format "[ 'malg' x : aT => E ]"). +Reserved Notation "[ 'malg' x 'in' aT => E ]" + (at level 0, x ident, format "[ 'malg' x 'in' aT => E ]"). Reserved Notation "[ 'malg' x => E ]" (at level 0, x ident, format "[ 'malg' x => E ]"). Reserved Notation "{ 'mpoly' T [ n ] }" @@ -341,8 +341,8 @@ End MkMalg. (* -------------------------------------------------------------------- *) Notation "[ 'malg' g ]" := (mkmalg g) : ring_scope. -Notation "[ 'malg' x : aT => E ]" - := (mkmalg [fsfun x : aT => E]) : ring_scope. +Notation "[ 'malg' x 'in' aT => E ]" + := (mkmalg [fsfun x in aT => E]) : ring_scope. Notation "[ 'malg' x => E ]" := (mkmalg [fsfun x => E]) : ring_scope. Notation "<< z *g k >>" @@ -397,7 +397,7 @@ Lemma mcoeff_fnd (g : {fmap K -> G}) k : Proof. by apply/fsfun_ffun. Qed. Lemma mcoeffE (domf : {fset K}) (E : K -> G) k : - [malg k : domf => E (val k)]@_k + [malg k in domf => E k]@_k = if k \in domf then E k else 0. Proof. by apply/fsfun_fun. Qed. @@ -437,10 +437,10 @@ Definition fgzero : {malg G[K]} := [malg x => [fmap] x]. Definition fgopp g := - [malg k : msupp g => - g@_(val k)]. + [malg k in msupp g => - g@_k]. Definition fgadd g1 g2 := - [malg k : (msupp g1 `|` msupp g2) => g1@_(val k) + g2@_(val k)]. + [malg k in (msupp g1 `|` msupp g2) => g1@_k + g2@_k]. Lemma fgzeroE k : fgzero@_k = 0. Proof. by rewrite mcoeff_fnd !(in_fsetE, not_fnd). Qed. @@ -598,18 +598,19 @@ Definition monalgUE := (* -------------------------------------------------------------------- *) Lemma monalgEw (g : {malg G[K]}) (domg : {fset K}) : msupp g `<=` domg -> - g = \sum_(k : domg) << g@_(val k) *g val k >>. -Proof. -move=> le_gd; apply/eqP/malgP=> k /=; case: msuppP=> [kg|k_notin_g]. - rewrite raddf_sum /= (bigD1 (fincl le_gd (FSetSub kg))) //=. - rewrite mcoeffUU big1 ?addr0 //; case=> [k' k'_in_g] /=. - by rewrite eqE /= mcoeffU => /negbTE ->. -rewrite raddf_sum /= big1 //; case=> [k' k'g] _ /=. + g = \sum_(k <- domg) << g@_k *g k >>. +Proof. +move/fsubsetP=> le_gd; apply/eqP/malgP=> k /=; case: msuppP=> [kg|k_notin_g]. + rewrite raddf_sum /= (big_fsetD1 k) //=; last by apply: le_gd. + rewrite mcoeffUU ?addr0 // big1_fset ?addr0 // => k'. + rewrite in_fsetD1 => /andP [/negbTE k_ne_k' _ _]. + by rewrite mcoeffU k_ne_k'. +rewrite raddf_sum /= big1_fset // => k' _ _. by rewrite mcoeffU; case: eqP k_notin_g=> // <- /mcoeff_outdom ->. Qed. Lemma monalgE (g : {malg G[K]}) : - g = \sum_(k : msupp g) << g@_(val k) *g val k >>. + g = \sum_(k <- msupp g) << g@_k *g k >>. Proof. by apply/monalgEw/fsubset_refl. Qed. End MAlgZModTheory. @@ -677,7 +678,7 @@ Implicit Types c x y z : R. Implicit Types k l : K. Definition fgscale c g : {malg R[K]} := - \sum_(k : msupp g) << c * g@_(val k) *g val k >>. + \sum_(k <- msupp g) << c * g@_k *g k >>. Local Notation "c *:g g" := (fgscale c g) (at level 40, left associativity). @@ -778,11 +779,11 @@ Local Notation "g1 *M_[ k1 , k2 ] g2" := (at level 40, no associativity, format "g1 *M_[ k1 , k2 ] g2"). Local Notation "g1 *gM_[ k2 ] g2" := - (\sum_(k1 : msupp g1) g1 *M_[val k1, k2] g2) + (\sum_(k1 <- msupp g1) g1 *M_[k1, k2] g2) (at level 40, no associativity, only parsing). Local Notation "g1 *Mg_[ k1 ] g2" := - (\sum_(k2 : msupp g2) g1 *M_[k1, val k2] g2) + (\sum_(k2 <- msupp g2) g1 *M_[k1, k2] g2) (at level 40, no associativity, only parsing). Local Notation fg1mull_r g1 g2 k2 := @@ -795,40 +796,41 @@ Local Notation fg1mull := (fg1mull_r _ _ _) (only parsing). Local Notation fg1mulr := (fg1mulr_r _ _ _) (only parsing). Definition fgmul g1 g2 : {malg R[K]} := - \sum_(k1 : msupp g1) \sum_(k2 : msupp g2) - g1 *M_[val k1, val k2] g2. + \sum_(k1 <- msupp g1) \sum_(k2 <- msupp g2) + g1 *M_[k1, k2] g2. Lemma fgmull g1 g2 : - fgmul g1 g2 = \sum_(k1 : msupp g1) \sum_(k2 : msupp g2) - g1 *M_[val k1, val k2] g2. + fgmul g1 g2 = \sum_(k1 <- msupp g1) \sum_(k2 <- msupp g2) + g1 *M_[k1, k2] g2. Proof. by []. Qed. Lemma fgmulr g1 g2 : - fgmul g1 g2 = \sum_(k2 : msupp g2) \sum_(k1 : msupp g1) - g1 *M_[val k1, val k2] g2. + fgmul g1 g2 = \sum_(k2 <- msupp g2) \sum_(k1 <- msupp g1) + g1 *M_[k1, k2] g2. Proof. by rewrite fgmull exchange_big. Qed. -Let fg1mulzg g1 g2 k1 k2 : k1 \notin msupp g1 -> +Let fg1mulzg g1 g2 k1 k2 : k1 \notin msupp g1 -> << g1@_k1 * g2@_k2 *g (k1 * k2)%M >> = 0. Proof. by move/mcoeff_outdom=> ->; rewrite mul0r monalgU0. Qed. -Let fg1mulgz g1 g2 k1 k2 : k2 \notin msupp g2 -> +Let fg1mulgz g1 g2 k1 k2 : k2 \notin msupp g2 -> << g1@_k1 * g2@_k2 *g (k1 * k2)%M >> = 0. Proof. by move/mcoeff_outdom=> ->; rewrite mulr0 monalgU0. Qed. +(* big_fset_incl has (op : com_law idx) as first non automatic argument *) Lemma fgmullw (d1 d2 : {fset K}) g1 g2 : msupp g1 `<=` d1 -> msupp g2 `<=` d2 -> fgmul g1 g2 = - \sum_(k1 : d1) \sum_(k2 : d2) g1 *M_[val k1, val k2] g2. + \sum_(k1 <- d1) \sum_(k2 <- d2) g1 *M_[k1, k2] g2. Proof. move=> le_d1 le_d2; pose F k1 := g1 *Mg_[k1] g2. -rewrite fgmull (big_fset_incl F le_d1) {}/F /=; last first. +rewrite fgmull (big_fset_incl _ le_d1) {}/F /=; last first. by move=> k _ /fg1mulzg ?; rewrite big1. -apply/eq_bigr=> k1 _; rewrite (big_fset_incl fg1mulr le_d2) //. +apply/eq_bigr=> k1 _; rewrite (big_fset_incl _ le_d2) //. by move=> x _ /fg1mulgz. Qed. Lemma fgmulrw (d1 d2 : {fset K}) g1 g2 : msupp g1 `<=` d1 -> msupp g2 `<=` d2 - -> fgmul g1 g2 = \sum_(k2 : d2) \sum_(k1 : d1) g1 *M_[val k1, val k2] g2. + -> fgmul g1 g2 = \sum_(k2 <- d2) \sum_(k1 <- d1) g1 *M_[k1, k2] g2. Proof. by move=> le_d1 le_d2; rewrite (fgmullw le_d1 le_d2) exchange_big. Qed. Definition fgmullwl (d1 : {fset K}) {g1 g2} (le : msupp g1 `<=` d1) := @@ -837,10 +839,10 @@ Definition fgmullwl (d1 : {fset K}) {g1 g2} (le : msupp g1 `<=` d1) := Definition fgmulrwl (d2 : {fset K}) {g1 g2} (le : msupp g2 `<=` d2) := @fgmulrw _ _ g1 g2 (fsubset_refl _) le. -Lemma fgmulElw (d1 d2 : {fset K}) g1 g2 k : +Lemma fgmulElw (d1 d2 : {fset K}) g1 g2 k : msupp g1 `<=` d1 -> msupp g2 `<=` d2 - -> (fgmul g1 g2)@_k = \sum_(k1 : d1) \sum_(k2 : d2) - (g1@_(val k1) * g2@_(val k2)) *+ ((val k1 * val k2)%M == k). + -> (fgmul g1 g2)@_k = \sum_(k1 <- d1) \sum_(k2 <- d2) + (g1@_k1 * g2@_k2) *+ ((k1 * k2)%M == k). Proof. move=> le1 le2; rewrite (fgmullw le1 le2) raddf_sum /=. apply/eq_bigr=> k1 _; rewrite raddf_sum /=; apply/eq_bigr=> k2 _. @@ -848,39 +850,39 @@ by rewrite mcoeffsE. Qed. Lemma fgmulErw (d1 d2 : {fset K}) g1 g2 k : msupp g1 `<=` d1 -> msupp g2 `<=` d2 - -> (fgmul g1 g2)@_k = \sum_(k2 : d2) \sum_(k1 : d1) - (g1@_(val k1) * g2@_(val k2)) *+ ((val k1 * val k2)%M == k). + -> (fgmul g1 g2)@_k = \sum_(k2 <- d2) \sum_(k1 <- d1) + (g1@_k1 * g2@_k2) *+ ((k1 * k2)%M == k). Proof. by move=> le1 le2; rewrite (fgmulElw _ le1 le2); rewrite exchange_big. Qed. Lemma fgmul0g g : fgmul 0 g = 0. -Proof. by rewrite fgmull msupp0 big_fset0. Qed. +Proof. by rewrite fgmull msupp0 big_seq_fset0. Qed. Lemma fgmulg0 g : fgmul g 0 = 0. -Proof. by rewrite fgmulr msupp0 big_fset0. Qed. +Proof. by rewrite fgmulr msupp0 big_seq_fset0. Qed. Lemma fgmulUg (d : {fset K}) c k g : msupp g `<=` d -> fgmul << c *g k >> g = - \sum_(k' : d) << c * g@_(val k') *g (k * val k')%M >>. + \sum_(k' <- d) << c * g@_k' *g (k * k')%M >>. Proof. -move=> le; rewrite (fgmullw msuppU_le le) big_fset1 /=. +move=> le; rewrite (fgmullw msuppU_le le) big_seq_fset1 /=. by apply/eq_bigr=> /= k' _; rewrite mcoeffUU. Qed. Lemma fgmulgU (d : {fset K}) c k g : msupp g `<=` d -> fgmul g << c *g k >> = - \sum_(k' : d) << g@_(val k') * c *g (val k' * k)%M >>. + \sum_(k' <- d) << g@_k' * c *g (k' * k)%M >>. Proof. -move=> le; rewrite (fgmulrw le msuppU_le) big_fset1 /=. +move=> le; rewrite (fgmulrw le msuppU_le) big_seq_fset1 /=. by apply/eq_bigr=> /= k' _; rewrite mcoeffUU. Qed. Lemma fgmulUU c1 c2 k1 k2 : fgmul << c1 *g k1 >> << c2 *g k2 >> = << c1 * c2 *g (k1 * k2)%M >>. -Proof. by rewrite (fgmullw msuppU_le msuppU_le) !big_fset1 /= !mcoeffUU. Qed. +Proof. by rewrite (fgmullw msuppU_le msuppU_le) !big_seq_fset1 /= !mcoeffUU. Qed. Lemma fgmulEl1w (d1 : {fset K}) {g1 g2} : msupp g1 `<=` d1 -> fgmul g1 g2 - = \sum_(k1 : d1) fgmul << g1@_(val k1) *g val k1 >> g2. + = \sum_(k1 <- d1) fgmul << g1@_k1 *g k1 >> g2. Proof. move=> le; rewrite (fgmullwl le); apply/eq_bigr=> /= k _. by rewrite -fgmulUg // fsubset_refl. @@ -888,7 +890,7 @@ Qed. Lemma fgmulEr1w (d2 : {fset K}) {g1 g2} : msupp g2 `<=` d2 -> fgmul g1 g2 - = \sum_(k2 : d2) fgmul g1 << g2@_(val k2) *g val k2 >>. + = \sum_(k2 <- d2) fgmul g1 << g2@_k2 *g k2 >>. Proof. move=> le; rewrite (fgmulrwl le); apply/eq_bigr=> /= k _. by rewrite -fgmulgU // fsubset_refl. @@ -919,19 +921,18 @@ Proof. by rewrite mcoeffU1 eq_sym. Qed. Lemma fgmulA : associative fgmul. Proof. move=> g1 g2 g3; pose_big_fset K E. - transitivity (\sum_(k1 : E) \sum_(k2 : E) \sum_(k3 : E) - << g1@_(val k1) * g2@_(val k2) * g3@_(val k3) *g - (val k1 * val k2 * val k3)%M >>). + transitivity (\sum_(k1 <- E) \sum_(k2 <- E) \sum_(k3 <- E) + << g1@_k1 * g2@_k2 * g3@_k3 *g (k1 * k2 * k3)%M >>). + rewrite (@fgmulEl1w E) //; apply/eq_bigr=> /= k1 _. rewrite [X in fgmul _ X](@fgmullw E E) //. - have /= raddf := raddf_sum (fgmullUg_additive g1@_(val k1) (val k1)). + have /= raddf := raddf_sum (fgmullUg_additive g1@_k1 k1). rewrite raddf; apply/eq_bigr=> /= k2 _; rewrite raddf. by apply/eq_bigr=> /= k3 _; rewrite fgmulUU mulrA mulmA. 2: by close. rewrite [LHS](eq_bigr _ (fun _ _ => exchange_big _ _ _ _ _ _)) /=. rewrite exchange_big /=; apply/esym; rewrite (@fgmulEr1w E) //. apply/eq_bigr=> /= k3 _; rewrite (@fgmullw E E g1) //. -have /= raddf := raddf_sum (fgmullgU_additive g3@_(val k3) (val k3)). +have /= raddf := raddf_sum (fgmullgU_additive g3@_k3 k3). rewrite raddf; apply/eq_bigr=> /= k1 _; rewrite raddf. by apply/eq_bigr=> /= k2 _; rewrite fgmulUU. Qed. @@ -939,14 +940,14 @@ Qed. Lemma fgmul1g : left_id fgone fgmul. Proof. move=> g; rewrite fgmull; apply/eqP/malgP=> k. -rewrite msuppU1 big_fset1 [X in _=X@__]monalgE !raddf_sum /=. +rewrite msuppU1 big_seq_fset1 [X in _=X@__]monalgE !raddf_sum /=. by apply/eq_bigr=> kg _; rewrite fgoneE eqxx mul1r mul1m. Qed. Lemma fgmulg1 : right_id fgone fgmul. Proof. move=> g; rewrite fgmulr; apply/eqP/malgP=> k. -rewrite msuppU1 big_fset1 [X in _=X@__]monalgE !raddf_sum /=. +rewrite msuppU1 big_seq_fset1 [X in _=X@__]monalgE !raddf_sum /=. by apply/eq_bigr=> kg _; rewrite fgoneE eqxx mulr1 mulm1. Qed. @@ -995,38 +996,38 @@ Proof. by []. Qed. (* -------------------------------------------------------------------- *) Lemma malgME g1 g2 : - g1 * g2 = \sum_(k1 : msupp g1) \sum_(k2 : msupp g2) - << g1@_(val k1) * g2@_(val k2) *g (val k1 * val k2)%M >>. + g1 * g2 = \sum_(k1 <- msupp g1) \sum_(k2 <- msupp g2) + << g1@_k1 * g2@_k2 *g (k1 * k2)%M >>. Proof. by []. Qed. Lemma malgMEw (d1 d2 : {fset K}) g1 g2 : msupp g1 `<=` d1 -> msupp g2 `<=` d2 -> - g1 * g2 = \sum_(k1 : d1) \sum_(k2 : d2) - << g1@_(val k1) * g2@_(val k2) *g (val k1 * val k2)%M >>. + g1 * g2 = \sum_(k1 <- d1) \sum_(k2 <- d2) + << g1@_k1 * g2@_k2 *g (k1 * k2)%M >>. Proof. by apply/fgmullw. Qed. (* -------------------------------------------------------------------- *) Lemma mcoeffMl g1 g2 k : - (g1 * g2)@_k = \sum_(k1 : msupp g1) \sum_(k2 : msupp g2) - (g1@_(val k1) * g2@_(val k2)) *+ (val k1 * val k2 == k)%M. + (g1 * g2)@_k = \sum_(k1 <- msupp g1) \sum_(k2 <- msupp g2) + (g1@_k1 * g2@_k2) *+ (k1 * k2 == k)%M. Proof. by apply/fgmulElw; apply/fsubset_refl. Qed. Lemma mcoeffMr g1 g2 k : - (g1 * g2)@_k = \sum_(k2 : msupp g2) \sum_(k1 : msupp g1) - (g1@_(val k1) * g2@_(val k2)) *+ (val k1 * val k2 == k)%M. + (g1 * g2)@_k = \sum_(k2 <- msupp g2) \sum_(k1 <- msupp g1) + (g1@_k1 * g2@_k2) *+ (k1 * k2 == k)%M. Proof. by apply/fgmulErw; apply/fsubset_refl. Qed. (* -------------------------------------------------------------------- *) Lemma mcoeffMlw (d1 d2 : {fset K}) g1 g2 k : msupp g1 `<=` d1 -> msupp g2 `<=` d2 -> - (g1 * g2)@_k = \sum_(k1 : d1) \sum_(k2 : d2) - (g1@_(val k1) * g2@_(val k2)) *+ (val k1 * val k2 == k)%M. + (g1 * g2)@_k = \sum_(k1 <- d1) \sum_(k2 <- d2) + (g1@_k1 * g2@_k2) *+ (k1 * k2 == k)%M. Proof. by apply/fgmulElw. Qed. Lemma mcoeffMrw (d1 d2 : {fset K}) g1 g2 k : msupp g1 `<=` d1 -> msupp g2 `<=` d2 -> - (g1 * g2)@_k = \sum_(k2 : d2) \sum_(k1 : d1) - (g1@_(val k1) * g2@_(val k2)) *+ (val k1 * val k2 == k)%M. + (g1 * g2)@_k = \sum_(k2 <- d2) \sum_(k1 <- d1) + (g1@_k1 * g2@_k2) *+ (k1 * k2 == k)%M. Proof. by apply/fgmulErw. Qed. (* -------------------------------------------------------------------- *) @@ -1043,15 +1044,40 @@ Lemma mcoeffCM c g k : (c%:MP * g)@_k = c * g@_k :> R. Proof. by rewrite mul_malgC mcoeffZ. Qed. (* -------------------------------------------------------------------- *) -Lemma msuppM_le g1 g2 k : +Lemma msuppM_le_finType g1 g2 k : k \in msupp (g1 * g2) -> - exists k1 : msupp g1, exists k2 : msupp g2, k = (val k1 * val k2)%M. + exists k1 : msupp g1, exists k2 : msupp g2, k = (val k1 * val k2)%M. Proof. move=> k_in_g1Mg2; apply/(existsPP (fun _ => exists_eqP)). apply/contraLR: k_in_g1Mg2=> hk; rewrite -mcoeff_eq0. -rewrite mcoeffMl big1 // => /= k1 _; rewrite big1 // => k2 _. -case: eqP=> // kE; case/negP: hk; apply/existsP. -by exists k1; apply/existsP; exists k2; rewrite kE. +rewrite mcoeffMl big_seq big1 // => /= k1 Hk1. +rewrite big_seq big1 // => k2 Hk2. +case: eqP=> // kE; case/negP: hk. +by apply/existsP; exists [` Hk1]; apply/existsP; exists [` Hk2]; rewrite kE. +Qed. + +Lemma msuppM_le g1 g2 k : + k \in msupp (g1 * g2) -> + exists k1 k2, [/\ k1 \in msupp g1, k2 \in msupp g2 & k = (k1 * k2)%M]. +Proof. +move/msuppM_le_finType => [] [k1 Hk1] [] [k2 Hk2] /= Hk. +by exists k1; exists k2. +Qed. + +(* Alternative equivalent statement *) +Lemma msuppM_incl g1 g2 : + msupp (g1 * g2) `<=` [fset (k1 * k2)%M | k1 in msupp g1, k2 in msupp g2]. +Proof. +have sum_neq0 f (s : seq K) (H : \sum_(i <- s) f i != 0) : + exists2 i, i \in s & f i != 0 :> R. + suff: ~~ all (fun i => f i == 0) s by move/allPn => [] i Hi Hf; exists i. + apply/contra: H => /allP H. + by rewrite big_seq; apply/eqP/big1 => i /H/eqP. +apply/fsubsetP => k. +rewrite -mcoeff_neq0 mcoeffMl => /sum_neq0 [k1 Hk1] /sum_neq0 [k2 Hk2] H. +apply/imfset2P; exists k1 => //; exists k2 => //. +apply/esym/eqP; move: H; rewrite eq_sym; apply contraR => /negbTE ->. +by rewrite mulr0n. Qed. (* -------------------------------------------------------------------- *) @@ -1081,11 +1107,12 @@ Lemma mcoeff1g_is_multiplicative : multiplicative (mcoeff 1%M : {malg R[K]} -> R). Proof. split=> [g1 g2|]; rewrite ?malgCK //; pose_big_fset K E. -have E1: 1%M \in E by by rewrite -fsub1set. -rewrite (@malgMEw E E) // (bigD1 (FSetSub E1)) //=. 2: by close. -rewrite (bigD1 (FSetSub E1)) //= mulm1 2!mcoeffD mcoeffUU. -rewrite !raddf_sum !big1 ?simpm //= => k; rewrite -val_eqE /= => ne1_k. - rewrite raddf_sum big1 ?mcoeff0 //= => k' _; rewrite mcoeffU. +have E1: 1%M \in E by rewrite -fsub1set. +rewrite (@malgMEw E E) // (big_fsetD1 1%M) //=. 2: by close. +rewrite (big_fsetD1 1%M) //= mulm1 2!mcoeffD mcoeffUU. +rewrite ![\sum_(i <- E `\ 1%M) _]big_seq. +rewrite !raddf_sum !big1 ?simpm //= => k; rewrite in_fsetD1 => /andP [ne1_k _]. + rewrite raddf_sum big1 ?mcoeff0 //= => k'; rewrite mcoeffU. by case: eqP=> // /eqP /MonomialTheory.unitmP []; rewrite (negbTE ne1_k). by rewrite mcoeffU mul1m (negbTE ne1_k). Qed. @@ -1139,10 +1166,10 @@ Section Defs. Variables (K : choiceType) (G : zmodType) (S : ringType). Variables (f : G -> S) (h : K -> S). -Definition mmap g := \sum_(k : msupp g) (f g@_(val k)) * (h (val k)). +Definition mmap g := \sum_(k <- msupp g) (f g@_k) * (h k). Lemma mmapE g : - mmap g = \sum_(k : msupp g) (f g@_(val k)) * (h (val k)). + mmap g = \sum_(k <- msupp g) (f g@_k) * (h k). Proof. by []. Qed. End Defs. @@ -1154,16 +1181,16 @@ Variables (K : choiceType) (G : zmodType) (S : ringType). Context {f : {additive G -> S}} {h : K -> S}. Lemma mmapEw (d : {fset K}) g : msupp g `<=` d -> - g^[f, h] = \sum_(k : d) (f g@_(val k)) * (h (val k)). + g^[f, h] = \sum_(k <- d) (f g@_k) * (h k). Proof. move=> le; pose F k := (f g@_k) * (h k); rewrite mmapE. -rewrite (big_fset_incl F le) {}/F //= => k _ /mcoeff_outdom. +rewrite (big_fset_incl _ le) {}/F //= => k _ /mcoeff_outdom. by move=> ->; rewrite raddf0 mul0r. Qed. Lemma mmapU (c : G) (m : K) : mmap f h << c *g m >> = (f c) * (h m). -Proof. by rewrite (mmapEw msuppU_le) big_fset1 mcoeffUU. Qed. +Proof. by rewrite (mmapEw msuppU_le) big_seq_fset1 mcoeffUU. Qed. End BaseTheory. Section Additive. @@ -1257,8 +1284,7 @@ Section Def. Context {K : choiceType} {G : zmodType}. Definition monalgOver (S : pred_class) := - [qualify a g : {malg G[K]} | - [forall m : msupp g, g@_(val m) \in S]]. + [qualify a g : {malg G[K]} | all (fun m => g@_m \in S) (msupp g)]. Fact monalgOver_key S : pred_key (monalgOver S). Proof. by []. Qed. Canonical monalgOver_keyed S := KeyedQualifier (monalgOver_key S). @@ -1273,25 +1299,22 @@ Local Notation monalgOver := (@monalgOver K G). Lemma monalgOverS (S1 S2 : pred_class) : {subset S1 <= S2} -> {subset monalgOver S1 <= monalgOver S2}. Proof. -move=> le_S1S2 g /forallP /= S1g; apply/forallP. -by move=> /= x; apply/le_S1S2/S1g. +move=> le_S1S2 g /allP /= S1g; apply/allP => /= x Hx. +exact/le_S1S2/S1g. Qed. Lemma monalgOverU c k S : << c *g k >> \in monalgOver S = (c == 0) || (c \in S). Proof. -rewrite qualifE msuppU; case: (c =P 0)=> [->|] /=. - by apply/forallP=> [[k']]; rewrite /= monalgU0 in_fset0. -move=> nz_c; apply/forallP/idP=> /= h. - by move/(_ (FSetSub (fset11 k))): h; rewrite mcoeffUU. -by case=> /= k'; rewrite in_fset1=> /eqP->; rewrite mcoeffUU. +rewrite qualifE msuppU; case: (c =P 0)=> [->|] //=. +move=> nz_c; apply/allP/idP=> /= [h | h x]. + by move/(_ k): h; rewrite mcoeffUU; apply; rewrite in_fset1. +by rewrite in_fset1=> /eqP->; rewrite mcoeffUU. Qed. Lemma monalgOver0 S: 0 \is a monalgOver S. -Proof. -rewrite qualifE msupp0; apply/forallP=> //=. -by case=> /= x; rewrite in_fset0. -Qed. +Proof. by rewrite qualifE msupp0; apply/allP. Qed. + End Theory. (* -------------------------------------------------------------------- *) @@ -1307,8 +1330,8 @@ Local Notation monalgOver := (@monalgOver K G). Lemma monalgOverP {g} : reflect (forall m, g@_m \in kS) (g \in monalgOver kS). Proof. -apply: (iffP forallP)=> /= h k; last by rewrite h. -by case: msuppP=> [kg|]; rewrite ?rpred0 // (h (FSetSub kg)). +apply: (iffP allP)=> /= h k; last by rewrite h. +by case: msuppP=> [kg|]; rewrite ?rpred0 // (h k). Qed. Lemma monalgOver_addr_closed : addr_closed (monalgOver kS). @@ -1439,17 +1462,17 @@ Proof. by case: mf=> mf' _ _ h /= mf0; apply/h. Qed. Lemma mf_eq0 m : (mf m == 0%N) = (m == 1%M). Proof. by apply/eqP/eqP=> [|->]; rewrite ?mf0 // => /mf_eq0I. Qed. -Definition mmeasure g := (\max_(m : msupp g) (mf (val m)).+1)%N. +Definition mmeasure g := (\max_(m <- msupp g) (mf m).+1)%N. -Lemma mmeasureE g : mmeasure g = (\max_(m : msupp g) (mf (val m)).+1)%N. +Lemma mmeasureE g : mmeasure g = (\max_(m <- msupp g) (mf m).+1)%N. Proof. by []. Qed. Lemma mmeasure0 : mmeasure 0 = 0%N. -Proof. by rewrite mmeasureE msupp0 big_fset0. Qed. +Proof. by rewrite mmeasureE msupp0 big_seq_fset0. Qed. Lemma mmeasure_mnm_lt g m : m \in msupp g -> (mf m < mmeasure g)%N. Proof. -move=> km; rewrite mmeasureE (bigD1 (FSetSub km)) //=. +move=> km; rewrite mmeasureE (big_fsetD1 m) //=. by rewrite leq_max ltnS leqnn. Qed. @@ -1459,7 +1482,7 @@ Proof. by apply/contraTN=> /mmeasure_mnm_lt; rewrite leqNgt ltnS. Qed. Lemma mmeasureC c : mmeasure c%:MP = (c != 0%R) :> nat. Proof. rewrite mmeasureE msuppC; case: (_ == 0)=> /=. -by rewrite big_fset0. by rewrite big_fset1 mf0. +by rewrite big_nil. by rewrite big_seq_fset1 mf0. Qed. Lemma mmeasureN g : mmeasure (-g) = mmeasure g. @@ -1468,7 +1491,9 @@ Proof. by rewrite mmeasureE msuppN. Qed. Lemma mmeasureD_le g1 g2 : (mmeasure (g1 + g2) <= maxn (mmeasure g1) (mmeasure g2))%N. Proof. -rewrite {1}mmeasureE; apply/bigmax_leqP=> [[i ki]] _ /=. +rewrite {1}mmeasureE big_seq_fsetE /=. +(* Going briefly through finType as lemmas about max apply only to them *) +apply/bigmax_leqP=> [[i ki]] _ /=. have /fsubsetP /(_ i ki) := (msuppD_le g1 g2); rewrite in_fsetU. by rewrite leq_max; case/orP=> /mmeasure_mnm_lt->; rewrite !simpm. Qed. @@ -1486,7 +1511,7 @@ Proof. apply/idP/eqP=> [z_g|->]; last by rewrite mmeasure0. apply/eqP/malgP=> k; rewrite mcoeff0; apply/contraTeq: z_g. rewrite mcoeff_neq0 => kg; rewrite mmeasureE. -by rewrite (bigD1 (FSetSub kg)) //= -lt0n leq_max. +by rewrite (big_fsetD1 k) //= -lt0n leq_max. Qed. Lemma malgSpred g : g != 0 -> mmeasure g = (mmeasure g).-1.+1. @@ -1501,7 +1526,7 @@ Section ComMonomial. Section Def. Variable (I : choiceType). -Inductive cmonom : predArgType := CMonom of {fsfun _ : I => 0%N}. +Inductive cmonom : predArgType := CMonom of {fsfun of _ : I => 0%N}. Definition cmonom_val m := let: CMonom m := m in m. Definition cmonom_of (_ : phant I) := cmonom. @@ -1547,7 +1572,7 @@ Context {I : choiceType}. Implicit Types m : {cmonom I}. Implicit Types i j : I. -Lemma cmE (f : {fsfun _ : I => 0%N}) : mkcmonom f =1 CMonom f. +Lemma cmE (f : {fsfun of _ : I => 0%N}) : mkcmonom f =1 CMonom f. Proof. by move=> i; rewrite unlock. Qed. Lemma cmP m1 m2 : reflect (forall i, m1 i = m2 i) (m1 == m2). @@ -1563,7 +1588,7 @@ Definition cmu i : {cmonom I} := mkcmonom [fsfun x => [fmap].[i <- 1%N] x]. Definition cmmul m1 m2 : {cmonom I} := mkcmonom [fsfun - i : finsupp m1 `|` finsupp m2 => (m1 (val i) + m2 (val i))%N]. + i in finsupp m1 `|` finsupp m2 => (m1 i + m2 i)%N]. Lemma cmoneE i : cmone i = 0%N. Proof. by rewrite cmE fsfun_ffun insubF. Qed. @@ -1612,7 +1637,7 @@ End Structures. (* -------------------------------------------------------------------- *) Definition mdeg {I : choiceType} (m : {cmonom I}) := - nosimpl (\sum_(k : finsupp m) (m (val k)))%N. + nosimpl (\sum_(k <- finsupp m) (m k))%N. Definition mnmwgt {n} (m : {cmonom 'I_n}) := nosimpl (\sum_i m i * i.+1)%N. @@ -1663,21 +1688,21 @@ apply/fsetP=> i; rewrite in_fsetU -!cmE_neq0 cmM. by rewrite addn_eq0 negb_and. Qed. -Lemma mdegE m : mdeg m = (\sum_(i : finsupp m) (m (val i)))%N. +Lemma mdegE m : mdeg m = (\sum_(i <- finsupp m) (m i))%N. Proof. by []. Qed. Lemma mdegEw m (d : {fset I}) : finsupp m `<=` d -> - mdeg m = (\sum_(i : d) (m (val i)))%N. -Proof. -move=> le; pose F i := m i; rewrite mdegE (big_fset_incl F le) //. + mdeg m = (\sum_(i <- d) (m i))%N. +Proof. +move=> le; pose F i := m i; rewrite mdegE (big_fset_incl _ le) //. by move=> i i_in_d; rewrite -cmE_neq0 negbK => /eqP. Qed. Lemma mdeg1 : mdeg 1%M = 0%N. -Proof. by rewrite mdegE mdom1 big_fset0. Qed. +Proof. by rewrite mdegE mdom1 big_seq_fset0. Qed. Lemma mdegU k : mdeg U_(k) = 1%N. -Proof. by rewrite mdegE mdomU big_fset1 cmUU. Qed. +Proof. by rewrite mdegE mdomU big_seq_fset1 cmUU. Qed. Lemma mdegM : {morph mdeg: m1 m2 / (m1 * m2)%M >-> (m1 + m2)%N }. Proof. @@ -1696,7 +1721,7 @@ Proof. by apply/big_morph; [apply/mdegM|apply/mdeg1]. Qed. Lemma mdeg_eq0I m : mdeg m = 0%N -> m = 1%M. Proof. move=> h; apply/eqP/cmP=> i; move: h; rewrite mdegE cm1. -case: mdomP=> // ki; rewrite (bigD1 (FSetSub ki)) //= => /eqP. +case: mdomP=> // ki; rewrite (big_fsetD1 i) //= => /eqP. by rewrite addn_eq0=> /andP[/eqP->]. Qed. @@ -1935,7 +1960,7 @@ Implicit Types g : {malg G[{cmonom I}]}. Local Notation mdeg := (@mdeg I). -Lemma msizeE g : msize g = (\max_(m : msupp g) (mdeg (val m)).+1)%N. +Lemma msizeE g : msize g = (\max_(m <- msupp g) (mdeg m).+1)%N. Proof. by apply/mmeasureE. Qed. Lemma msize_mdeg_lt g m : m \in msupp g -> (mdeg m < msize g)%N. diff --git a/src/xfinmap.v b/src/xfinmap.v index f6cde8e..3a75a87 100644 --- a/src/xfinmap.v +++ b/src/xfinmap.v @@ -12,67 +12,6 @@ Unset Printing Implicit Defensive. Local Open Scope fset. Local Open Scope fmap. -(* -------------------------------------------------------------------- *) -Lemma fnd_fmap0 (T : choiceType) (U : Type) x : - ([fmap] : {fmap T -> U}).[?x] = None. -Proof. by rewrite not_fnd // in_fset0. Qed. - -(* -------------------------------------------------------------------- *) -Lemma enum_fset0 (T : choiceType) : - enum [finType of fset0] = [::] :> seq (@fset0 T). -Proof. by rewrite enumT unlock. Qed. - -Lemma enum_fset1 (T : choiceType) (x : T) : - enum [finType of [fset x]] = [:: [`fset11 x]]. -Proof. -apply/perm_eq_small=> //; apply/uniq_perm_eq => //. - by apply/enum_uniq. -case=> [y hy]; rewrite mem_seq1 mem_enum /in_mem /=. -by rewrite eqE /=; rewrite in_fset1 in hy. -Qed. - -(* -------------------------------------------------------------------- *) -Section BigFSet. -Variable (R : Type) (idx : R) (op : Monoid.law idx). -Variable (I : choiceType). - -Lemma big_fset0 (F : @fset0 I -> R) : - \big[op/idx]_(i : fset0) F i = idx. -Proof. by rewrite /index_enum -enumT /= enum_fset0 big_nil. Qed. - -Lemma big_fset1 (a : I) (F : [fset a] -> R) : - \big[op/idx]_(i : [fset a]) F i = F (FSetSub (fset11 a)). -Proof. by rewrite /index_enum -enumT enum_fset1 big_seq1. Qed. -End BigFSet. - -Section BigFSetIncl. -Variables (R : Type) (idx : R) (op : Monoid.com_law idx). -Variables (T : choiceType) (A B : {fset T}) (F : T -> R). - -Lemma big_fset_incl : - A `<=` B - -> (forall x, x \in B -> x \notin A -> F x = idx) - -> \big[op/idx]_(x : A) F (val x) = \big[op/idx]_(x : B) F (val x). -Proof. -move=> leAB Fid; rewrite [RHS](bigID (mem A \o val)) /=. -rewrite [X in op _ X]big1 => [|b /Fid ->//]. -rewrite Monoid.mulm1 -[RHS]big_filter. -rewrite -[LHS](big_map _ xpredT) -[RHS](big_map _ xpredT). -apply/eq_big_perm/uniq_perm_eq. -+ rewrite map_inj_uniq; last by apply/val_inj. - by rewrite /index_enum -enumT enum_uniq. -+ rewrite map_inj_uniq; [apply/filter_uniq | by apply/val_inj]. - by rewrite /index_enum -enumT enum_uniq. -move=> x; apply/mapP/mapP=> -[] => [a _ ->|b]. -+ exists (fincl leAB a) => //; rewrite mem_filter /=. - by rewrite fsvalP /= /index_enum -enumT mem_enum. -rewrite mem_filter => /andP[inA _] ->; exists [`inA] => //. -by rewrite /index_enum -enumT mem_enum. -Qed. -End BigFSetIncl. - -Arguments big_fset_incl [R idx op T A B]. - (* -------------------------------------------------------------------- *) Module BigEnoughFSet. Export BigEnough.