-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
381 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,381 @@ | ||
From mathcomp Require Import all_ssreflect. | ||
|
||
Set Implicit Arguments. | ||
Unset Strict Implicit. | ||
Unset Printing Implicit Defensive. | ||
|
||
(******************************************************************************) | ||
(* *) | ||
(* Formalisation of Residue Number System *) | ||
(* *) | ||
(******************************************************************************) | ||
|
||
Section RNS. | ||
|
||
Record rns := { | ||
rM : nat ; | ||
rl : list nat ; | ||
rco: [&& rM == foldr muln 1 rl, uniq rl, 0 \notin rl & | ||
all (fun i : nat => | ||
all (fun j : nat => (i != j) ==> coprime i j) rl) rl] | ||
}. | ||
|
||
Lemma rl_uniq r : uniq (rl r). | ||
Proof. by case: r => ? ? /= /and4P[]. Qed. | ||
|
||
Lemma rM_gt0 r : 0 < rM r. | ||
Proof. | ||
case: r => /= [] [|//] l /and4P[Hf _ /negP[]]; rewrite eq_sym in Hf. | ||
elim: l Hf => //= a l IH; rewrite muln_eq0 => /orP[/eqP->//|/IH Hf]. | ||
by rewrite inE Hf orbT. | ||
Qed. | ||
|
||
Lemma rME r : rM r = \prod_(i <- rl r) i. | ||
Proof. by case: r => M l /= /and4P[/eqP]; rewrite -foldrE. Qed. | ||
|
||
Lemma rM_dvd r (i : nat) : i \in rl r -> i %| rM r. | ||
Proof. | ||
case: r => M l /= /and4P[/eqP-> _ _ _]. | ||
elim: l i => //= a l IH i. | ||
rewrite inE => /orP[/eqP->|/IH//]; first by apply: dvdn_mulr. | ||
by apply: dvdn_mull. | ||
Qed. | ||
|
||
Lemma rM_dvd_div r (i j : nat) : | ||
i != j -> i \in rl r -> j \in rl r -> i %| (rM r %/ j). | ||
Proof. | ||
move=> iDj iI jI; rewrite dvdn_divRL; last by apply: rM_dvd. | ||
have rU := rl_uniq r. | ||
rewrite rME (bigD1_seq j) //= big_mkcond_idem //= (bigD1_seq i) //= iDj. | ||
by rewrite mulnA [j * _]mulnC; apply: dvdn_mulr. | ||
Qed. | ||
|
||
Lemma coprime_prod (i : nat) (P : pred nat) l : | ||
(forall j, P j -> j \in l -> coprime i j) -> | ||
coprime i (\prod_(j <- l | P j) j). | ||
Proof. | ||
elim: l => [|a l IH] Hj /=; first by rewrite big_nil coprimen1. | ||
have Hj' : forall j : nat, P j -> j \in l -> coprime i j. | ||
by move=> ? ? jI; apply: Hj => //; rewrite inE jI orbT. | ||
rewrite big_cons; case E: P; last by apply: IH. | ||
by rewrite coprimeMr IH ?andbT ?Hj ?inE ?eqxx. | ||
Qed. | ||
|
||
Lemma rl_coprime r (i j : nat) : | ||
i \in rl r -> j \in rl r -> i != j -> coprime i j. | ||
Proof. | ||
case: r => /= M l /and4P[_ _ _] /allP /= Hi iI jI iDj. | ||
by have /allP/(_ _ jI) := Hi _ iI; rewrite iDj. | ||
Qed. | ||
|
||
Lemma coprime_rM_div r (i : nat) : i \in rl r -> coprime (rM r %/ i) i. | ||
Proof. | ||
move=> iI. | ||
rewrite rME (bigD1_seq i) //=; last by apply: rl_uniq. | ||
rewrite mulKn; last by case: i iI; case: r => ? ? /= /and4P[]; case: (_ \in _). | ||
rewrite coprime_sym; apply: coprime_prod => j jDi jI. | ||
by apply: rl_coprime iI jI _; rewrite eq_sym. | ||
Qed. | ||
|
||
Definition rnorm r l := all2 (fun i j => j < i) (rl r) l. | ||
|
||
Lemma size_rnorm r l : rnorm r l -> size l = size (rl r). | ||
Proof. by rewrite /rnorm all2E => /andP [/eqP]. Qed. | ||
|
||
Definition rn_rl (r : rns) n := [seq (n %% i) | i <- rl r]. | ||
|
||
Lemma rnorm_rn_rl r n : rnorm r (rn_rl r n). | ||
Proof. | ||
rewrite /rnorm all2E size_map eqxx /=. | ||
apply/allP =>/= [] [x y] /(nthP (0, 0)) [i]. | ||
rewrite size_zip size_map minnn nth_zip ?size_map // => iLs [<- <-] /=. | ||
rewrite (nth_map 0) // ltn_mod. | ||
by case: nth (mem_nth 0 iLs) => //; case: {iLs}r => M l /= /and4P[]; | ||
case: in_mem. | ||
Qed. | ||
|
||
Definition rl_rn (r : rns) l := | ||
(foldr addn 0 [seq (let a := rM r %/ j.1 in | ||
let b := (egcdn a j.1).1 in | ||
(a * ((b %% j.1 * j.2) %% j.1))) | | ||
j <- zip (rl r) l]) %% rM r. | ||
|
||
Lemma rl_rnE r l : rl_rn r l = (\sum_(i <- zip (rl r) l) | ||
let a := rM r %/ i.1 in | ||
let b := (egcdn a i.1).1 in | ||
(a * ((b %% i.1 * i.2) %% i.1))) %% rM r. | ||
Proof. | ||
congr (_ %% _); rewrite unlock /reducebig /=. | ||
by elim: zip => //= a l1 ->. | ||
Qed. | ||
|
||
Lemma ltn_rl_rn r l : rl_rn r l < rM r. | ||
Proof. by rewrite ltn_mod; apply: rM_gt0. Qed. | ||
|
||
Lemma size_rn_rl r n : size (rn_rl r n) = size (rl r). | ||
Proof. by rewrite size_map. Qed. | ||
|
||
Lemma zip_uniql (S T : eqType) (s : seq S) (t : seq T) : | ||
uniq s -> uniq (zip s t). | ||
Proof. | ||
case: s t => [|s0 s] [|t0 t] //; apply: contraTT => /(uniqPn (s0, t0)) [i [j]]. | ||
case=> o z; rewrite !nth_zip_cond !ifT ?js ?(ltn_trans o)// => -[n _]. | ||
by apply/(uniqPn s0); exists i, j; rewrite o n (leq_trans z) ?size_zip?geq_minl. | ||
Qed. | ||
|
||
Lemma zip_uniqr (S T : eqType) (s : seq S) (t : seq T) : | ||
uniq t -> uniq (zip s t). | ||
Proof. | ||
case: s t => [|s0 s] [|t0 t] //; apply: contraTT => /(uniqPn (s0, t0)) [i [j]]. | ||
case=> o z; rewrite !nth_zip_cond !ifT ?js ?(ltn_trans o)// => -[_ n]. | ||
by apply/(uniqPn t0); exists i, j; rewrite o n (leq_trans z) ?size_zip?geq_minr. | ||
Qed. | ||
|
||
Lemma mem_zip (S T : eqType) (s : seq S) (t : seq T) a : | ||
a \in zip s t -> a.1 \in s /\ a.2 \in t. | ||
Proof. | ||
elim: s t => [|b s IH] [|c t]; rewrite //= !inE => /orP[/eqP->/=|/IH[-> ->]]. | ||
by rewrite !eqxx. | ||
by rewrite !orbT. | ||
Qed. | ||
|
||
Lemma index_uniq_zipl (S T : eqType) (s : seq S) (t : seq T) a : | ||
uniq s -> a \in zip s t -> index a (zip s t) = index a.1 s. | ||
Proof. | ||
case: a => a b /=; elim: s t => [|c s IH] [|d t]; rewrite //= ?inE. | ||
rewrite eq_sym. | ||
case: eqP => /=; first by case => -> _; rewrite !eqxx. | ||
move=> cdDab /andP[cNIs sU] abI. | ||
rewrite ifN; first by congr (_.+1); apply: IH. | ||
by apply: contra cNIs => /eqP->; have [] := mem_zip abI. | ||
Qed. | ||
|
||
Lemma neq_uniq_zipl (S T : eqType) (s : seq S) (t : seq T) a b : | ||
uniq s -> a \in zip s t -> b \in zip s t -> (a != b) -> a.1 != b.1. | ||
Proof. | ||
case: a => a1 a2; case: b => b1 b2 /=. | ||
elim: s t => [|c s IH] [|d t]; rewrite //= ?inE. | ||
case: eqP => /=. | ||
case=> <- <- /andP[a1I sU] _. | ||
case: eqP => /=; first by case=> <- <-; rewrite eqxx. | ||
by move=> _ /mem_zip[/= ? _] _; apply: contra a1I => /eqP->. | ||
move=> _ /andP[cI sU] a1a2I. | ||
case: eqP => /=; last by move=> _ /(IH _ sU a1a2I). | ||
case=> -> -> _ _; apply: contra cI => /eqP<-. | ||
by have [] := mem_zip a1a2I. | ||
Qed. | ||
|
||
Lemma rl_rnK r l : rnorm r l -> rn_rl r (rl_rn r l) = l. | ||
Proof. | ||
move=> Hr; apply: (@eq_from_nth _ 0) => [|i]. | ||
by rewrite size_map -(size_rnorm Hr). | ||
have Hs : size (zip (rl r) l) = size (rl r). | ||
by rewrite size_zip (size_rnorm Hr) minnn. | ||
rewrite size_rn_rl => iLs. | ||
rewrite (nth_map 0) // rl_rnE (bigD1_seq (nth (0,0) (zip (rl r) l) i)) //=; | ||
last 2 first. | ||
- by apply: mem_nth; rewrite Hs. | ||
- by apply/zip_uniql/rl_uniq. | ||
rewrite (nth_zip 0 0) /=; last by rewrite (size_rnorm Hr). | ||
set a := nth _ _ _; set b := nth _ _ _. | ||
have abE : (a, b) = nth (0, 0) (zip (rl r) l) i. | ||
by rewrite nth_zip //; apply/sym_equal/size_rnorm. | ||
have aI : a \in rl r by apply/mem_nth. | ||
rewrite modn_dvdm; last by apply/rM_dvd/mem_nth. | ||
rewrite -modnDmr -modn_summ modnDmr. | ||
rewrite big_mkcond_idem //=. | ||
rewrite big_seq big1 /=; last first. | ||
case => i1 j1 i1j1I /=; case: eqP => //= /eqP i1j1D. | ||
have i1Da : i1 != a. | ||
apply: neq_uniq_zipl i1j1I _ i1j1D; first by apply: rl_uniq. | ||
by rewrite abE; apply: mem_nth; rewrite Hs. | ||
have /= [i1E j1E] := mem_zip i1j1I. | ||
rewrite -modnMml. | ||
suff -> : (rM r %/ i1) %% a = 0 by rewrite mul0n mod0n. | ||
by apply/eqP/rM_dvd_div => //; rewrite eq_sym. | ||
rewrite addn0 modnMml modnMmr. | ||
case: egcdnP => [|km kl kmlE _]//=. | ||
rewrite divn_gt0; last first. | ||
by case: a {abE}aI; case: {Hr Hs iLs}r => /= ? ? /and4P[]; case: (_ \in _). | ||
apply: dvdn_leq; first by apply: rM_gt0. | ||
by apply: rM_dvd. | ||
rewrite mulnCA mulnA kmlE -modnMml modnMDl modnMml. | ||
have /eqP-> : coprime (rM r %/ a) a by apply: coprime_rM_div. | ||
rewrite mul1n modn_small //. | ||
rewrite /rnorm all2E in Hr. | ||
have /andP[/eqP Hs1 /allP/(_ (a, b)) /=] := Hr. | ||
apply; rewrite -nth_zip //. | ||
by apply: mem_nth; rewrite Hs. | ||
Qed. | ||
|
||
Lemma rn_rl_inj r m1 m2 : | ||
m1 < rM r -> m2 < rM r -> rn_rl r m1 = rn_rl r m2 -> m1 = m2. | ||
Proof. | ||
wlog : m1 m2 / m1 <= m2 => [Hr m1L m2L rnE|m1Lm2 m1L m2L rnE]. | ||
case: (leqP m1 m2)=> m1Lm2; first by apply: Hr. | ||
by apply/sym_equal/Hr => //; apply: ltnW. | ||
suff : m2 - m1 = 0 by move/eqP=> H; apply/eqP; rewrite eqn_leq m1Lm2. | ||
suff: rM r %| m2 - m1. | ||
have : m2 - m1 < rM r. | ||
by apply: leq_ltn_trans (leq_subr _ _) m2L. | ||
case: (_ - _) => // u Hlt Hd. | ||
have := dvdn_leq (isT : 0 < u.+1) Hd. | ||
by rewrite leqNgt Hlt. | ||
suff : forall i : nat, i \in rl r -> i %| m2 - m1. | ||
rewrite rME. | ||
have : forall i j : nat, i \in rl r -> j \in rl r -> i != j -> coprime i j. | ||
move=> i j iI jI iDj. | ||
case : {m1L m2L rnE}r iI jI => /= ? ? /and4P[_ _ _ /allP HH] iI jI. | ||
by have /allP/(_ _ jI) := HH _ iI; rewrite iDj. | ||
elim: rl (rl_uniq r) => /= [|a rl IH /andP[aNI Hu] Hc Hi]. | ||
by rewrite big_nil dvd1n. | ||
rewrite big_cons Gauss_dvd; last first. | ||
apply: coprime_prod => i _ iI; apply: Hc; rewrite ?inE ?eqxx ?iI ?orbT //. | ||
by apply: contra aNI => /eqP->. | ||
rewrite Hi ?inE ?eqxx //= IH // => [i j Hi1 Hj1|i Hi1]. | ||
by apply: Hc; rewrite inE ?Hi1 ?Hj1 orbT. | ||
by rewrite Hi // inE Hi1 orbT. | ||
move=> i iI. | ||
suff /eqP : m1 = m2 %[mod i]. | ||
by rewrite -{1}[m1]add0n -{1}(subnK m1Lm2) eqn_modDr mod0n eq_sym. | ||
have : m1 %% i = nth 0 (rn_rl r m1) (index i (rl r)). | ||
by rewrite (nth_map 0) ?index_mem ?nth_index. | ||
by rewrite rnE (nth_map 0) ?index_mem ?nth_index. | ||
Qed. | ||
|
||
Lemma rn_rlK r m : m < rM r -> rl_rn r (rn_rl r m) = m. | ||
Proof. | ||
move=> mLM. | ||
apply: (@rn_rl_inj r) => //; first by rewrite ltn_mod; apply: rM_gt0. | ||
by apply/rl_rnK/rnorm_rn_rl. | ||
Qed. | ||
|
||
Definition r_ex := {|rM := 5187; rl := [::3; 7; 13; 19]; rco := isT|}. | ||
|
||
Compute (rl_rn r_ex (rn_rl r_ex 121)). | ||
|
||
Compute rn_rl r_ex 147. | ||
Compute rl_rn r_ex [::0; 0; 4; 14]. | ||
|
||
Definition rN_op (r : rns) (f : nat -> nat -> nat) l1 l2 := | ||
[seq (f i.1.1 i.1.2) %% i.2 | i <- zip (zip l1 l2) (rl r)]. | ||
|
||
Lemma rnorm_rN_op r f l1 l2 : | ||
rnorm r l1 -> rnorm r l2 -> rnorm r (rN_op r f l1 l2). | ||
Proof. | ||
rewrite /rnorm !all2E => [] /andP[/eqP Hs1 Ha1] /andP[/eqP Hs2 Ha2]. | ||
rewrite size_map !size_zip -Hs1 -Hs2 !minnn eqxx /=. | ||
apply/allP => /= i. | ||
rewrite /rN_op. | ||
have : 0 \notin rl r by case: (r) => ? ? /= /and4P[]. | ||
elim: rl l1 l2 {Ha1 Ha2}Hs1 Hs2 => /= [|a l IH [|b l1] [|c l2] /= H1 H2 H3] //. | ||
by do 2 case=> //. | ||
rewrite !inE => /orP[/eqP->/=|]. | ||
by rewrite ltn_mod //; case: (a) H3; rewrite ?inE. | ||
rewrite inE negb_or in H3; have /andP[H4 H5] := H3. | ||
by apply: IH => //; [case: H1 | case: H2]. | ||
Qed. | ||
|
||
Definition rN_add r := rN_op r addn. | ||
|
||
Lemma rnorm_rN_add r l1 l2 : | ||
rnorm r l1 -> rnorm r l2 -> rnorm r (rN_add r l1 l2). | ||
Proof. by apply: rnorm_rN_op. Qed. | ||
|
||
Lemma rN_add_rn_rl r m n : | ||
rN_add r (rn_rl r m) (rn_rl r n) = rn_rl r ((m + n) %% rM r). | ||
Proof. | ||
rewrite /rn_rl /rN_add /rN_op. | ||
elim: rl (@rM_dvd r) => //= a l IH Hd. | ||
rewrite IH; last by move => i Hi; apply: Hd; rewrite inE Hi orbT. | ||
by rewrite modnDml modnDmr modn_dvdm // Hd // inE eqxx. | ||
Qed. | ||
|
||
Lemma rN_add_rl_rn r l1 l2 : | ||
rnorm r l1 -> rnorm r l2 -> | ||
rl_rn r (rN_add r l1 l2) = rl_rn r l1 + rl_rn r l2 %[mod (rM r)]. | ||
Proof. | ||
move=> Hl1 Hl2. | ||
rewrite -[in LHS](rl_rnK Hl1) -[in LHS](rl_rnK Hl2). | ||
by rewrite rN_add_rn_rl rn_rlK ?modn_mod // ltn_mod // rM_gt0. | ||
Qed. | ||
|
||
Definition rN_mul r := rN_op r muln. | ||
|
||
Lemma rnorm_rN_mul r l1 l2 : | ||
rnorm r l1 -> rnorm r l2 -> rnorm r (rN_mul r l1 l2). | ||
Proof. by apply: rnorm_rN_op. Qed. | ||
|
||
Lemma rN_mul_rn_rl r m n : | ||
rN_mul r (rn_rl r m) (rn_rl r n) = rn_rl r ((m * n) %% rM r). | ||
Proof. | ||
rewrite /rn_rl /rN_mul /rN_op. | ||
elim: rl (@rM_dvd r) => //= a l IH Hd. | ||
rewrite IH; last by move => i Hi; apply: Hd; rewrite inE Hi orbT. | ||
by rewrite modnMml modnMmr modn_dvdm // Hd // inE eqxx. | ||
Qed. | ||
|
||
Lemma rN_mul_rl_rn r l1 l2 : | ||
rnorm r l1 -> rnorm r l2 -> | ||
rl_rn r (rN_mul r l1 l2) = rl_rn r l1 * rl_rn r l2 %[mod (rM r)]. | ||
Proof. | ||
move=> Hl1 Hl2. | ||
rewrite -[in LHS](rl_rnK Hl1) -[in LHS](rl_rnK Hl2). | ||
by rewrite rN_mul_rn_rl rn_rlK ?modn_mod // ltn_mod // rM_gt0. | ||
Qed. | ||
|
||
Definition rN_inv (r : rns) l := | ||
[seq (egcdn i.1 i.2).1 %% i.2 | i <- zip l (rl r)]. | ||
|
||
Lemma zip_nill (S T : eqType) l : zip [::] l = [::] :> seq (S * T). | ||
Proof. by case: l. Qed. | ||
|
||
Lemma zip_nilr (S T : eqType) l : zip [::] l = [::] :> seq (S * T). | ||
Proof. by case: l. Qed. | ||
|
||
Lemma rnorm_rN_inv r l : rnorm r l -> rnorm r (rN_inv r l). | ||
Proof. | ||
rewrite /rnorm /rN_inv !all2E => [] /andP[/eqP Hs Ha]. | ||
rewrite size_map size_zip Hs minnn eqxx /=. | ||
apply/allP => /= i. | ||
have : 0 \notin rl r by case: (r) => ? ? /= /and4P[]. | ||
elim: rl l {Ha}Hs => /= [|a rl IH [|b l] /= H1 H2] //; first by case=> //. | ||
rewrite !inE => /orP[/eqP->/=|]. | ||
by rewrite ltn_mod //; case: (a) H2; rewrite ?inE. | ||
rewrite inE negb_or in H2; have /andP[H3 H4] := H2. | ||
by apply: IH => //; case: H1. | ||
Qed. | ||
|
||
Lemma rN_inv_rn_rl r m : | ||
coprime m (rM r) -> | ||
rN_mul r (rn_rl r m) (rN_inv r (rn_rl r m)) = rn_rl r 1. | ||
Proof. | ||
rewrite /rN_inv /rN_mul /rN_op /rn_rl => Hc. | ||
elim: rl (@rM_dvd r) => //= a l IH Hd. | ||
congr (_ :: _); last by apply: IH => i Hi; apply: Hd; rewrite inE Hi orbT. | ||
have aD : a %| rM r by apply: Hd; rewrite inE eqxx. | ||
have aC : coprime (m %% a) a by rewrite coprime_modl; apply: coprime_dvdr aD _. | ||
rewrite modnMml modnMmr. | ||
case E: (a %| m). | ||
suff ->: a = 1 by rewrite modn1. | ||
have : a %| gcdn (rM r) m by rewrite dvdn_gcd aD. | ||
by rewrite gcdnC (eqP Hc) dvdn1 => /eqP. | ||
case: egcdnP => [|km kl kmlE _]//=. | ||
by move: E; rewrite /dvdn; case: (m %% a). | ||
by rewrite -modnMml mulnC kmlE (eqP aC) modnMDl. | ||
Qed. | ||
|
||
Definition XRNS := [:: 0; 0; 4; 14]. | ||
Definition YRNS := [:: 1; 3; 5; 12]. | ||
Definition ZRNS := [:: 1; 5; 7; 10]. | ||
|
||
Compute rN_add r_ex XRNS YRNS. | ||
Compute rl_rn r_ex (rN_add r_ex XRNS YRNS). | ||
|
||
Compute rN_mul r_ex XRNS YRNS. | ||
Compute rl_rn r_ex (rN_mul r_ex XRNS YRNS). | ||
|
||
Compute rN_mul r_ex ZRNS (rN_inv r_ex YRNS). | ||
Compute rl_rn r_ex (rN_mul r_ex ZRNS (rN_inv r_ex YRNS)). | ||
|
||
End RNS. |