-
Notifications
You must be signed in to change notification settings - Fork 2
/
rns.v
381 lines (330 loc) · 13 KB
/
rns.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
From mathcomp Require Import all_ssreflect.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(******************************************************************************)
(* *)
(* Formalisation of Residue Number System *)
(* *)
(******************************************************************************)
Section RNS.
Record rns := {
rM : nat ;
rl : list nat ;
rco: [&& rM == foldr muln 1 rl, uniq rl, 0 \notin rl &
all (fun i : nat =>
all (fun j : nat => (i != j) ==> coprime i j) rl) rl]
}.
Lemma rl_uniq r : uniq (rl r).
Proof. by case: r => ? ? /= /and4P[]. Qed.
Lemma rM_gt0 r : 0 < rM r.
Proof.
case: r => /= [] [|//] l /and4P[Hf _ /negP[]]; rewrite eq_sym in Hf.
elim: l Hf => //= a l IH; rewrite muln_eq0 => /orP[/eqP->//|/IH Hf].
by rewrite inE Hf orbT.
Qed.
Lemma rME r : rM r = \prod_(i <- rl r) i.
Proof. by case: r => M l /= /and4P[/eqP]; rewrite -foldrE. Qed.
Lemma rM_dvd r (i : nat) : i \in rl r -> i %| rM r.
Proof.
case: r => M l /= /and4P[/eqP-> _ _ _].
elim: l i => //= a l IH i.
rewrite inE => /orP[/eqP->|/IH//]; first by apply: dvdn_mulr.
by apply: dvdn_mull.
Qed.
Lemma rM_dvd_div r (i j : nat) :
i != j -> i \in rl r -> j \in rl r -> i %| (rM r %/ j).
Proof.
move=> iDj iI jI; rewrite dvdn_divRL; last by apply: rM_dvd.
have rU := rl_uniq r.
rewrite rME (bigD1_seq j) //= big_mkcond_idem //= (bigD1_seq i) //= iDj.
by rewrite mulnA [j * _]mulnC; apply: dvdn_mulr.
Qed.
Lemma coprime_prod (i : nat) (P : pred nat) l :
(forall j, P j -> j \in l -> coprime i j) ->
coprime i (\prod_(j <- l | P j) j).
Proof.
elim: l => [|a l IH] Hj /=; first by rewrite big_nil coprimen1.
have Hj' : forall j : nat, P j -> j \in l -> coprime i j.
by move=> ? ? jI; apply: Hj => //; rewrite inE jI orbT.
rewrite big_cons; case E: P; last by apply: IH.
by rewrite coprimeMr IH ?andbT ?Hj ?inE ?eqxx.
Qed.
Lemma rl_coprime r (i j : nat) :
i \in rl r -> j \in rl r -> i != j -> coprime i j.
Proof.
case: r => /= M l /and4P[_ _ _] /allP /= Hi iI jI iDj.
by have /allP/(_ _ jI) := Hi _ iI; rewrite iDj.
Qed.
Lemma coprime_rM_div r (i : nat) : i \in rl r -> coprime (rM r %/ i) i.
Proof.
move=> iI.
rewrite rME (bigD1_seq i) //=; last by apply: rl_uniq.
rewrite mulKn; last by case: i iI; case: r => ? ? /= /and4P[]; case: (_ \in _).
rewrite coprime_sym; apply: coprime_prod => j jDi jI.
by apply: rl_coprime iI jI _; rewrite eq_sym.
Qed.
Definition rnorm r l := all2 (fun i j => j < i) (rl r) l.
Lemma size_rnorm r l : rnorm r l -> size l = size (rl r).
Proof. by rewrite /rnorm all2E => /andP [/eqP]. Qed.
Definition rn_rl (r : rns) n := [seq (n %% i) | i <- rl r].
Lemma rnorm_rn_rl r n : rnorm r (rn_rl r n).
Proof.
rewrite /rnorm all2E size_map eqxx /=.
apply/allP =>/= [] [x y] /(nthP (0, 0)) [i].
rewrite size_zip size_map minnn nth_zip ?size_map // => iLs [<- <-] /=.
rewrite (nth_map 0) // ltn_mod.
by case: nth (mem_nth 0 iLs) => //; case: {iLs}r => M l /= /and4P[];
case: in_mem.
Qed.
Definition rl_rn (r : rns) l :=
(foldr addn 0 [seq (let a := rM r %/ j.1 in
let b := (egcdn a j.1).1 in
(a * ((b %% j.1 * j.2) %% j.1))) |
j <- zip (rl r) l]) %% rM r.
Lemma rl_rnE r l : rl_rn r l = (\sum_(i <- zip (rl r) l)
let a := rM r %/ i.1 in
let b := (egcdn a i.1).1 in
(a * ((b %% i.1 * i.2) %% i.1))) %% rM r.
Proof.
congr (_ %% _); rewrite unlock /reducebig /=.
by elim: zip => //= a l1 ->.
Qed.
Lemma ltn_rl_rn r l : rl_rn r l < rM r.
Proof. by rewrite ltn_mod; apply: rM_gt0. Qed.
Lemma size_rn_rl r n : size (rn_rl r n) = size (rl r).
Proof. by rewrite size_map. Qed.
Lemma zip_uniql (S T : eqType) (s : seq S) (t : seq T) :
uniq s -> uniq (zip s t).
Proof.
case: s t => [|s0 s] [|t0 t] //; apply: contraTT => /(uniqPn (s0, t0)) [i [j]].
case=> o z; rewrite !nth_zip_cond !ifT ?js ?(ltn_trans o)// => -[n _].
by apply/(uniqPn s0); exists i, j; rewrite o n (leq_trans z) ?size_zip?geq_minl.
Qed.
Lemma zip_uniqr (S T : eqType) (s : seq S) (t : seq T) :
uniq t -> uniq (zip s t).
Proof.
case: s t => [|s0 s] [|t0 t] //; apply: contraTT => /(uniqPn (s0, t0)) [i [j]].
case=> o z; rewrite !nth_zip_cond !ifT ?js ?(ltn_trans o)// => -[_ n].
by apply/(uniqPn t0); exists i, j; rewrite o n (leq_trans z) ?size_zip?geq_minr.
Qed.
Lemma mem_zip (S T : eqType) (s : seq S) (t : seq T) a :
a \in zip s t -> a.1 \in s /\ a.2 \in t.
Proof.
elim: s t => [|b s IH] [|c t]; rewrite //= !inE => /orP[/eqP->/=|/IH[-> ->]].
by rewrite !eqxx.
by rewrite !orbT.
Qed.
Lemma index_uniq_zipl (S T : eqType) (s : seq S) (t : seq T) a :
uniq s -> a \in zip s t -> index a (zip s t) = index a.1 s.
Proof.
case: a => a b /=; elim: s t => [|c s IH] [|d t]; rewrite //= ?inE.
rewrite eq_sym.
case: eqP => /=; first by case => -> _; rewrite !eqxx.
move=> cdDab /andP[cNIs sU] abI.
rewrite ifN; first by congr (_.+1); apply: IH.
by apply: contra cNIs => /eqP->; have [] := mem_zip abI.
Qed.
Lemma neq_uniq_zipl (S T : eqType) (s : seq S) (t : seq T) a b :
uniq s -> a \in zip s t -> b \in zip s t -> (a != b) -> a.1 != b.1.
Proof.
case: a => a1 a2; case: b => b1 b2 /=.
elim: s t => [|c s IH] [|d t]; rewrite //= ?inE.
case: eqP => /=.
case=> <- <- /andP[a1I sU] _.
case: eqP => /=; first by case=> <- <-; rewrite eqxx.
by move=> _ /mem_zip[/= ? _] _; apply: contra a1I => /eqP->.
move=> _ /andP[cI sU] a1a2I.
case: eqP => /=; last by move=> _ /(IH _ sU a1a2I).
case=> -> -> _ _; apply: contra cI => /eqP<-.
by have [] := mem_zip a1a2I.
Qed.
Lemma rl_rnK r l : rnorm r l -> rn_rl r (rl_rn r l) = l.
Proof.
move=> Hr; apply: (@eq_from_nth _ 0) => [|i].
by rewrite size_map -(size_rnorm Hr).
have Hs : size (zip (rl r) l) = size (rl r).
by rewrite size_zip (size_rnorm Hr) minnn.
rewrite size_rn_rl => iLs.
rewrite (nth_map 0) // rl_rnE (bigD1_seq (nth (0,0) (zip (rl r) l) i)) //=;
last 2 first.
- by apply: mem_nth; rewrite Hs.
- by apply/zip_uniql/rl_uniq.
rewrite (nth_zip 0 0) /=; last by rewrite (size_rnorm Hr).
set a := nth _ _ _; set b := nth _ _ _.
have abE : (a, b) = nth (0, 0) (zip (rl r) l) i.
by rewrite nth_zip //; apply/sym_equal/size_rnorm.
have aI : a \in rl r by apply/mem_nth.
rewrite modn_dvdm; last by apply/rM_dvd/mem_nth.
rewrite -modnDmr -modn_summ modnDmr.
rewrite big_mkcond_idem //=.
rewrite big_seq big1 /=; last first.
case => i1 j1 i1j1I /=; case: eqP => //= /eqP i1j1D.
have i1Da : i1 != a.
apply: neq_uniq_zipl i1j1I _ i1j1D; first by apply: rl_uniq.
by rewrite abE; apply: mem_nth; rewrite Hs.
have /= [i1E j1E] := mem_zip i1j1I.
rewrite -modnMml.
suff -> : (rM r %/ i1) %% a = 0 by rewrite mul0n mod0n.
by apply/eqP/rM_dvd_div => //; rewrite eq_sym.
rewrite addn0 modnMml modnMmr.
case: egcdnP => [|km kl kmlE _]//=.
rewrite divn_gt0; last first.
by case: a {abE}aI; case: {Hr Hs iLs}r => /= ? ? /and4P[]; case: (_ \in _).
apply: dvdn_leq; first by apply: rM_gt0.
by apply: rM_dvd.
rewrite mulnCA mulnA kmlE -modnMml modnMDl modnMml.
have /eqP-> : coprime (rM r %/ a) a by apply: coprime_rM_div.
rewrite mul1n modn_small //.
rewrite /rnorm all2E in Hr.
have /andP[/eqP Hs1 /allP/(_ (a, b)) /=] := Hr.
apply; rewrite -nth_zip //.
by apply: mem_nth; rewrite Hs.
Qed.
Lemma rn_rl_inj r m1 m2 :
m1 < rM r -> m2 < rM r -> rn_rl r m1 = rn_rl r m2 -> m1 = m2.
Proof.
wlog : m1 m2 / m1 <= m2 => [Hr m1L m2L rnE|m1Lm2 m1L m2L rnE].
case: (leqP m1 m2)=> m1Lm2; first by apply: Hr.
by apply/sym_equal/Hr => //; apply: ltnW.
suff : m2 - m1 = 0 by move/eqP=> H; apply/eqP; rewrite eqn_leq m1Lm2.
suff: rM r %| m2 - m1.
have : m2 - m1 < rM r.
by apply: leq_ltn_trans (leq_subr _ _) m2L.
case: (_ - _) => // u Hlt Hd.
have := dvdn_leq (isT : 0 < u.+1) Hd.
by rewrite leqNgt Hlt.
suff : forall i : nat, i \in rl r -> i %| m2 - m1.
rewrite rME.
have : forall i j : nat, i \in rl r -> j \in rl r -> i != j -> coprime i j.
move=> i j iI jI iDj.
case : {m1L m2L rnE}r iI jI => /= ? ? /and4P[_ _ _ /allP HH] iI jI.
by have /allP/(_ _ jI) := HH _ iI; rewrite iDj.
elim: rl (rl_uniq r) => /= [|a rl IH /andP[aNI Hu] Hc Hi].
by rewrite big_nil dvd1n.
rewrite big_cons Gauss_dvd; last first.
apply: coprime_prod => i _ iI; apply: Hc; rewrite ?inE ?eqxx ?iI ?orbT //.
by apply: contra aNI => /eqP->.
rewrite Hi ?inE ?eqxx //= IH // => [i j Hi1 Hj1|i Hi1].
by apply: Hc; rewrite inE ?Hi1 ?Hj1 orbT.
by rewrite Hi // inE Hi1 orbT.
move=> i iI.
suff /eqP : m1 = m2 %[mod i].
by rewrite -{1}[m1]add0n -{1}(subnK m1Lm2) eqn_modDr mod0n eq_sym.
have : m1 %% i = nth 0 (rn_rl r m1) (index i (rl r)).
by rewrite (nth_map 0) ?index_mem ?nth_index.
by rewrite rnE (nth_map 0) ?index_mem ?nth_index.
Qed.
Lemma rn_rlK r m : m < rM r -> rl_rn r (rn_rl r m) = m.
Proof.
move=> mLM.
apply: (@rn_rl_inj r) => //; first by rewrite ltn_mod; apply: rM_gt0.
by apply/rl_rnK/rnorm_rn_rl.
Qed.
Definition r_ex := {|rM := 5187; rl := [::3; 7; 13; 19]; rco := isT|}.
Compute (rl_rn r_ex (rn_rl r_ex 121)).
Compute rn_rl r_ex 147.
Compute rl_rn r_ex [::0; 0; 4; 14].
Definition rN_op (r : rns) (f : nat -> nat -> nat) l1 l2 :=
[seq (f i.1.1 i.1.2) %% i.2 | i <- zip (zip l1 l2) (rl r)].
Lemma rnorm_rN_op r f l1 l2 :
rnorm r l1 -> rnorm r l2 -> rnorm r (rN_op r f l1 l2).
Proof.
rewrite /rnorm !all2E => [] /andP[/eqP Hs1 Ha1] /andP[/eqP Hs2 Ha2].
rewrite size_map !size_zip -Hs1 -Hs2 !minnn eqxx /=.
apply/allP => /= i.
rewrite /rN_op.
have : 0 \notin rl r by case: (r) => ? ? /= /and4P[].
elim: rl l1 l2 {Ha1 Ha2}Hs1 Hs2 => /= [|a l IH [|b l1] [|c l2] /= H1 H2 H3] //.
by do 2 case=> //.
rewrite !inE => /orP[/eqP->/=|].
by rewrite ltn_mod //; case: (a) H3; rewrite ?inE.
rewrite inE negb_or in H3; have /andP[H4 H5] := H3.
by apply: IH => //; [case: H1 | case: H2].
Qed.
Definition rN_add r := rN_op r addn.
Lemma rnorm_rN_add r l1 l2 :
rnorm r l1 -> rnorm r l2 -> rnorm r (rN_add r l1 l2).
Proof. by apply: rnorm_rN_op. Qed.
Lemma rN_add_rn_rl r m n :
rN_add r (rn_rl r m) (rn_rl r n) = rn_rl r ((m + n) %% rM r).
Proof.
rewrite /rn_rl /rN_add /rN_op.
elim: rl (@rM_dvd r) => //= a l IH Hd.
rewrite IH; last by move => i Hi; apply: Hd; rewrite inE Hi orbT.
by rewrite modnDml modnDmr modn_dvdm // Hd // inE eqxx.
Qed.
Lemma rN_add_rl_rn r l1 l2 :
rnorm r l1 -> rnorm r l2 ->
rl_rn r (rN_add r l1 l2) = rl_rn r l1 + rl_rn r l2 %[mod (rM r)].
Proof.
move=> Hl1 Hl2.
rewrite -[in LHS](rl_rnK Hl1) -[in LHS](rl_rnK Hl2).
by rewrite rN_add_rn_rl rn_rlK ?modn_mod // ltn_mod // rM_gt0.
Qed.
Definition rN_mul r := rN_op r muln.
Lemma rnorm_rN_mul r l1 l2 :
rnorm r l1 -> rnorm r l2 -> rnorm r (rN_mul r l1 l2).
Proof. by apply: rnorm_rN_op. Qed.
Lemma rN_mul_rn_rl r m n :
rN_mul r (rn_rl r m) (rn_rl r n) = rn_rl r ((m * n) %% rM r).
Proof.
rewrite /rn_rl /rN_mul /rN_op.
elim: rl (@rM_dvd r) => //= a l IH Hd.
rewrite IH; last by move => i Hi; apply: Hd; rewrite inE Hi orbT.
by rewrite modnMml modnMmr modn_dvdm // Hd // inE eqxx.
Qed.
Lemma rN_mul_rl_rn r l1 l2 :
rnorm r l1 -> rnorm r l2 ->
rl_rn r (rN_mul r l1 l2) = rl_rn r l1 * rl_rn r l2 %[mod (rM r)].
Proof.
move=> Hl1 Hl2.
rewrite -[in LHS](rl_rnK Hl1) -[in LHS](rl_rnK Hl2).
by rewrite rN_mul_rn_rl rn_rlK ?modn_mod // ltn_mod // rM_gt0.
Qed.
Definition rN_inv (r : rns) l :=
[seq (egcdn i.1 i.2).1 %% i.2 | i <- zip l (rl r)].
Lemma zip_nill (S T : eqType) l : zip [::] l = [::] :> seq (S * T).
Proof. by case: l. Qed.
Lemma zip_nilr (S T : eqType) l : zip [::] l = [::] :> seq (S * T).
Proof. by case: l. Qed.
Lemma rnorm_rN_inv r l : rnorm r l -> rnorm r (rN_inv r l).
Proof.
rewrite /rnorm /rN_inv !all2E => [] /andP[/eqP Hs Ha].
rewrite size_map size_zip Hs minnn eqxx /=.
apply/allP => /= i.
have : 0 \notin rl r by case: (r) => ? ? /= /and4P[].
elim: rl l {Ha}Hs => /= [|a rl IH [|b l] /= H1 H2] //; first by case=> //.
rewrite !inE => /orP[/eqP->/=|].
by rewrite ltn_mod //; case: (a) H2; rewrite ?inE.
rewrite inE negb_or in H2; have /andP[H3 H4] := H2.
by apply: IH => //; case: H1.
Qed.
Lemma rN_inv_rn_rl r m :
coprime m (rM r) ->
rN_mul r (rn_rl r m) (rN_inv r (rn_rl r m)) = rn_rl r 1.
Proof.
rewrite /rN_inv /rN_mul /rN_op /rn_rl => Hc.
elim: rl (@rM_dvd r) => //= a l IH Hd.
congr (_ :: _); last by apply: IH => i Hi; apply: Hd; rewrite inE Hi orbT.
have aD : a %| rM r by apply: Hd; rewrite inE eqxx.
have aC : coprime (m %% a) a by rewrite coprime_modl; apply: coprime_dvdr aD _.
rewrite modnMml modnMmr.
case E: (a %| m).
suff ->: a = 1 by rewrite modn1.
have : a %| gcdn (rM r) m by rewrite dvdn_gcd aD.
by rewrite gcdnC (eqP Hc) dvdn1 => /eqP.
case: egcdnP => [|km kl kmlE _]//=.
by move: E; rewrite /dvdn; case: (m %% a).
by rewrite -modnMml mulnC kmlE (eqP aC) modnMDl.
Qed.
Definition XRNS := [:: 0; 0; 4; 14].
Definition YRNS := [:: 1; 3; 5; 12].
Definition ZRNS := [:: 1; 5; 7; 10].
Compute rN_add r_ex XRNS YRNS.
Compute rl_rn r_ex (rN_add r_ex XRNS YRNS).
Compute rN_mul r_ex XRNS YRNS.
Compute rl_rn r_ex (rN_mul r_ex XRNS YRNS).
Compute rN_mul r_ex ZRNS (rN_inv r_ex YRNS).
Compute rl_rn r_ex (rN_mul r_ex ZRNS (rN_inv r_ex YRNS)).
End RNS.