-
Notifications
You must be signed in to change notification settings - Fork 5
/
model.py
234 lines (191 loc) · 8.47 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchgan.layers import SpectralNorm2d
import enum
from ssim import msssim
from normalization import SwitchNorm2d
class Sampling(enum.Enum):
UpSampling = enum.auto()
DownSampling = enum.auto()
Identity = enum.auto()
NUM_BANDS = 6
PATCH_SIZE = 256
SCALE_FACTOR = 16
class Upsample(nn.Module):
def __init__(self, scale_factor=2):
super(Upsample, self).__init__()
self.scale_factor = scale_factor
def forward(self, inputs):
return F.interpolate(inputs, scale_factor=self.scale_factor)
class ReconstructionLoss(nn.Module):
def __init__(self, model, alpha=1.0, beta=1.0, gamma=1.0):
super(ReconstructionLoss, self).__init__()
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.model = model.eval()
for param in self.model.parameters():
param.requires_grad = False
self.encoder = nn.Sequential(
self.model.conv1,
self.model.conv2,
self.model.conv3,
self.model.conv4
)
def forward(self, prediction, target):
_prediction, _target = self.encoder(prediction), self.encoder(target)
loss = (self.alpha * F.mse_loss(_prediction, _target) +
self.gamma * (1.0 - torch.mean(F.cosine_similarity(_prediction, _target, 1))) +
self.beta * (1.0 - msssim(prediction, target, normalize=True)))
return loss
class Conv3X3NoPadding(nn.Conv2d):
def __init__(self, in_channels, out_channels, stride=1):
super(Conv3X3NoPadding, self).__init__(in_channels, out_channels, 3, stride=stride, padding=1)
class Conv3X3WithPadding(nn.Sequential):
def __init__(self, in_channels, out_channels, stride=1):
super(Conv3X3WithPadding, self).__init__(
nn.ReplicationPad2d(1),
nn.Conv2d(in_channels, out_channels, 3, stride=stride)
)
class ConvBlock(nn.Sequential):
def __init__(self, in_channels, out_channels, sampling=None):
layers = []
if sampling == Sampling.DownSampling:
layers.append(Conv3X3WithPadding(in_channels, out_channels, 2))
else:
if sampling == Sampling.UpSampling:
layers.append(Upsample(2))
layers.append(Conv3X3WithPadding(in_channels, out_channels))
layers.append(nn.LeakyReLU(inplace=True))
super(ConvBlock, self).__init__(*layers)
class ResidulBlockWtihSwitchNorm(nn.Module):
def __init__(self, in_channels, out_channels, sampling=None):
super(ResidulBlockWtihSwitchNorm, self).__init__()
channels = min(in_channels, out_channels)
residual = [
SwitchNorm2d(in_channels),
nn.LeakyReLU(inplace=True),
Conv3X3WithPadding(in_channels, channels),
SwitchNorm2d(channels),
nn.LeakyReLU(inplace=True),
nn.Conv2d(channels, out_channels, 1)
]
transform = [
Conv3X3WithPadding(in_channels, channels),
nn.Conv2d(channels, out_channels, 1),
nn.LeakyReLU(inplace=True)
]
if sampling == Sampling.UpSampling:
residual.insert(2, Upsample(2))
transform.insert(0, Upsample(2))
elif sampling == Sampling.DownSampling:
residual[2] = Conv3X3WithPadding(in_channels, channels, 2)
transform[0] = Conv3X3WithPadding(in_channels, channels, 2)
self.residual = nn.Sequential(*residual)
self.transform = nn.Sequential(*transform)
def forward(self, inputs):
trunk = self.residual(inputs[1])
lateral = self.transform(inputs[0])
return lateral, trunk + lateral
class ResidulBlock(nn.Module):
def __init__(self, in_channels, out_channels, sampling=None):
super(ResidulBlock, self).__init__()
channels = min(in_channels, out_channels)
residual = [
Conv3X3WithPadding(in_channels, channels),
nn.LeakyReLU(inplace=True),
nn.Conv2d(channels, out_channels, 1)
]
transform = [nn.Conv2d(in_channels, out_channels, 1)]
if sampling == Sampling.UpSampling:
residual.insert(0, Upsample(2))
transform.insert(0, Upsample(2))
elif sampling == Sampling.DownSampling:
residual[0] = Conv3X3WithPadding(in_channels, channels, 2)
transform[0] = nn.Conv2d(in_channels, out_channels, 1, stride=2)
self.residual = nn.Sequential(*residual)
self.transform = transform[0] if len(transform) == 1 else nn.Sequential(*transform)
def forward(self, inputs):
trunk = self.residual(inputs)
lateral = self.transform(inputs)
return trunk + lateral
class AutoEncoder(nn.Module):
def __init__(self, in_channels=NUM_BANDS, out_channels=NUM_BANDS):
super(AutoEncoder, self).__init__()
channels = (16, 32, 64, 128)
self.conv1 = ConvBlock(in_channels, channels[0])
self.conv2 = ConvBlock(channels[0], channels[1], Sampling.DownSampling)
self.conv3 = ConvBlock(channels[1], channels[2], Sampling.DownSampling)
self.conv4 = ConvBlock(channels[2], channels[3], Sampling.DownSampling)
self.conv5 = ConvBlock(channels[3], channels[2], Sampling.UpSampling)
self.conv6 = ConvBlock(channels[2] * 2, channels[1], Sampling.UpSampling)
self.conv7 = ConvBlock(channels[1] * 2, channels[0], Sampling.UpSampling)
self.conv8 = nn.Conv2d(channels[0] * 2, out_channels, 1)
def forward(self, inputs):
l1 = self.conv1(inputs)
l2 = self.conv2(l1)
l3 = self.conv3(l2)
l4 = self.conv4(l3)
l5 = self.conv5(l4)
l6 = self.conv6(torch.cat((l3, l5), 1))
l7 = self.conv7(torch.cat((l2, l6), 1))
out = self.conv8(torch.cat((l1, l7), 1))
return out
class SFFusion(nn.Module):
def __init__(self, in_channels=NUM_BANDS, out_channels=NUM_BANDS):
channels = (16, 32, 64, 128)
super(SFFusion, self).__init__()
self.encoder = nn.Sequential(
ResidulBlockWtihSwitchNorm(in_channels, channels[0]),
ResidulBlockWtihSwitchNorm(channels[0], channels[1]),
ResidulBlockWtihSwitchNorm(channels[1], channels[2]),
ResidulBlockWtihSwitchNorm(channels[2], channels[3])
)
self.decoder = nn.Sequential(
ResidulBlock(channels[3] * 2, channels[3]),
ResidulBlock(channels[3], channels[2]),
ResidulBlock(channels[2], channels[1]),
ResidulBlock(channels[1], channels[0]),
nn.Conv2d(channels[0], out_channels, 1)
)
def forward(self, inputs):
return self.decoder(torch.cat(self.encoder(inputs), 1))
class ResidulBlockWithSpectralNorm(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidulBlockWithSpectralNorm, self).__init__()
self.residual = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.LeakyReLU(inplace=True),
SpectralNorm2d(
Conv3X3NoPadding(in_channels, in_channels, stride=2)),
nn.BatchNorm2d(in_channels),
nn.LeakyReLU(inplace=True),
SpectralNorm2d(
nn.Conv2d(in_channels, out_channels, 1)),
)
self.transform = SpectralNorm2d(nn.Conv2d(in_channels, out_channels, 1, stride=2))
def forward(self, inputs):
return self.transform(inputs) + self.residual(inputs)
# 判别器网络
class Discriminator(nn.Sequential):
def __init__(self, channels):
modules = []
for i in range(1, (len(channels))):
modules.append(ResidulBlockWithSpectralNorm(channels[i - 1], channels[i]))
modules.append(SpectralNorm2d(nn.Conv2d(channels[-1], 1, 1)))
super(Discriminator, self).__init__(*modules)
def forward(self, inputs):
prediction = super(Discriminator, self).forward(inputs)
return prediction.view(-1, 1).squeeze(1)
class MSDiscriminator(nn.Module):
def __init__(self):
super(MSDiscriminator, self).__init__()
self.d1 = Discriminator((NUM_BANDS * 2, 32, 32, 64, 64, 128, 128, 256, 256))
self.d2 = Discriminator((NUM_BANDS * 2, 32, 64, 64, 128, 128, 256, 256))
self.d3 = Discriminator((NUM_BANDS * 2, 32, 64, 128, 128, 256, 256))
def forward(self, inputs):
l1 = self.d1(inputs)
l2 = self.d2(F.interpolate(inputs, scale_factor=0.5))
l3 = self.d3(F.interpolate(inputs, scale_factor=0.25))
return torch.mean(torch.stack((l1, l2, l3)))