-
Notifications
You must be signed in to change notification settings - Fork 3
/
classifier.py
128 lines (83 loc) · 3.4 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import torchvision
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
net.cuda()
import torch.optim as optim
if __name__ == '__main__':
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
train = True
if train:
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
#inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
output = net(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
torch.save(net.state_dict(), 'cifar-10-model')
net.load_state_dict(torch.load('cifar-10-model'))
correct = 0
total = 0
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for i, data in enumerate(testloader, 0):
inputs, labels = data
inputs, targets = data
images = Variable(inputs.cuda())
labels = Variable(labels.cuda())
#images = Variable(inputs)
output = net(images)
_, predicted = torch.max(output.data, 1)
c = predicted.eq(labels.data).squeeze()
for i in range(4):
label = targets[i]
class_correct[label] += c[i]
class_total[label] += 1
total += 1
correct += c[i]
print('Total test accuracy : %d %%' %
(100 * correct / total))
for i in range(10):
print('Accuracy of %5s : %2d %%' %
(classes[i], 100 * class_correct[i] / class_total[i]))