-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ShuffleNetV2.py
315 lines (242 loc) · 11.3 KB
/
train_ShuffleNetV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import time
import os
import numpy as np
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
#import encoding
from network.rtpose_vgg import get_model, use_vgg
from network import rtpose_shufflenetV2
from training.datasets.coco import get_loader
# Hyper-params
parser = argparse.ArgumentParser(description='PyTorch rtpose Training')
parser.add_argument('--data_dir', default='/data/coco/images', type=str, metavar='DIR',
help='path to where coco images stored')
parser.add_argument('--mask_dir', default='/data/coco/', type=str, metavar='DIR',
help='path to where coco images stored')
parser.add_argument('--logdir', default='/extra/tensorboy', type=str, metavar='DIR',
help='path to where tensorboard log restore')
parser.add_argument('--json_path', default='/data/coco/COCO.json', type=str, metavar='PATH',
help='path to where coco images stored')
parser.add_argument('--model_path', default='./network/weight/', type=str, metavar='DIR',
help='path to where the model saved')
parser.add_argument('--lr', '--learning-rate', default=1., type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--weight-decay', '--wd', default=0.000, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--nesterov', dest='nesterov', action='store_true')
parser.add_argument('-o', '--optim', default='sgd', type=str)
#Device options
parser.add_argument('--gpu_ids', dest='gpu_ids', help='which gpu to use', nargs="+",
default=[0,1,2,3], type=int)
parser.add_argument('-b', '--batch_size', default=80, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--print_freq', default=20, type=int, metavar='N',
help='number of iterations to print the training statistics')
from tensorboardX import SummaryWriter
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in args.gpu_ids)
params_transform = dict()
params_transform['mode'] = 5
# === aug_scale ===
params_transform['scale_min'] = 0.5
params_transform['scale_max'] = 1.1
params_transform['scale_prob'] = 1
params_transform['target_dist'] = 0.6
# === aug_rotate ===
params_transform['max_rotate_degree'] = 40
# ===
params_transform['center_perterb_max'] = 40
# === aug_flip ===
params_transform['flip_prob'] = 0.5
params_transform['np'] = 56
params_transform['sigma'] = 7.0
def get_loss(saved_for_loss, heat_temp, heat_weight,
vec_temp, vec_weight):
saved_for_log = OrderedDict()
criterion = nn.MSELoss(size_average=True).cuda()
#criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=args.gpu_ids)
total_loss = 0
pred1 = saved_for_loss[0] * vec_weight
"""
print("pred1 sizes")
print(saved_for_loss[2*j].data.size())
print(vec_weight.data.size())
print(vec_temp.data.size())
"""
gt1 = vec_temp * vec_weight
pred2 = saved_for_loss[1] * heat_weight
gt2 = heat_weight * heat_temp
"""
print("pred2 sizes")
print(saved_for_loss[2*j+1].data.size())
print(heat_weight.data.size())
print(heat_temp.data.size())
"""
# Compute losses
loss1 = criterion(pred1, gt1)
loss2 = criterion(pred2, gt2)
total_loss += loss1
total_loss += loss2
# print(total_loss)
# Get value from Variable and save for log
saved_for_log['paf'] = loss1.item()
saved_for_log['heatmap'] = loss2.item()
saved_for_log['max_ht'] = torch.max(
saved_for_loss[-1].data[:, 0:-1, :, :]).item()
saved_for_log['min_ht'] = torch.min(
saved_for_loss[-1].data[:, 0:-1, :, :]).item()
saved_for_log['max_paf'] = torch.max(saved_for_loss[-2].data).item()
saved_for_log['min_paf'] = torch.min(saved_for_loss[-2].data).item()
return total_loss, saved_for_log
def train(train_loader, model, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
meter_dict = {}
meter_dict['paf'] = AverageMeter()
meter_dict['heatmap'] = AverageMeter()
meter_dict['max_ht'] = AverageMeter()
meter_dict['min_ht'] = AverageMeter()
meter_dict['max_paf'] = AverageMeter()
meter_dict['min_paf'] = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (img, heatmap_target, heat_mask, paf_target, paf_mask) in enumerate(train_loader):
# measure data loading time
#writer.add_text('Text', 'text logged at step:' + str(i), i)
#for name, param in model.named_parameters():
# writer.add_histogram(name, param.clone().cpu().data.numpy(),i)
data_time.update(time.time() - end)
img = img.cuda()
heatmap_target = heatmap_target.cuda()
heat_mask = heat_mask.cuda()
paf_target = paf_target.cuda()
paf_mask = paf_mask.cuda()
# compute output
_,saved_for_loss = model(img)
total_loss, saved_for_log = get_loss(saved_for_loss, heatmap_target, heat_mask,
paf_target, paf_mask)
for name,_ in meter_dict.items():
meter_dict[name].update(saved_for_log[name], img.size(0))
losses.update(total_loss, img.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_string = 'Epoch: [{0}][{1}/{2}]\t'.format(epoch, i, len(train_loader))
print_string +='Data time {data_time.val:.3f} ({data_time.avg:.3f})\t'.format( data_time=data_time)
print_string += 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(loss=losses)
for name, value in meter_dict.items():
print_string+='{name}: {loss.val:.4f} ({loss.avg:.4f})\t'.format(name=name, loss=value)
print(print_string)
return losses.avg
def validate(val_loader, model, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
meter_dict = {}
meter_dict['paf'] = AverageMeter()
meter_dict['heatmap'] = AverageMeter()
meter_dict['max_ht'] = AverageMeter()
meter_dict['min_ht'] = AverageMeter()
meter_dict['max_paf'] = AverageMeter()
meter_dict['min_paf'] = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (img, heatmap_target, heat_mask, paf_target, paf_mask) in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
img = img.cuda()
heatmap_target = heatmap_target.cuda()
heat_mask = heat_mask.cuda()
paf_target = paf_target.cuda()
paf_mask = paf_mask.cuda()
# compute output
_,saved_for_loss = model(img)
total_loss, saved_for_log = get_loss(saved_for_loss, heatmap_target, heat_mask,
paf_target, paf_mask)
#for name,_ in meter_dict.items():
# meter_dict[name].update(saved_for_log[name], img.size(0))
losses.update(total_loss.item(), img.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_string = 'Epoch: [{0}][{1}/{2}]\t'.format(epoch, i, len(val_loader))
print_string +='Data time {data_time.val:.3f} ({data_time.avg:.3f})\t'.format( data_time=data_time)
print_string += 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(loss=losses)
for name, value in meter_dict.items():
print_string+='{name}: {loss.val:.4f} ({loss.avg:.4f})\t'.format(name=name, loss=value)
print(print_string)
return losses.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
print("Loading dataset...")
# load data
train_data = get_loader(args.json_path, args.data_dir,
args.mask_dir, 368, 8,
'rtpose', args.batch_size, params_transform = params_transform,
shuffle=True, training=True, num_workers=16)
print('train dataset len: {}'.format(len(train_data.dataset)))
# validation data
valid_data = get_loader(args.json_path, args.data_dir, args.mask_dir, 368,
8, preprocess='rtpose', training=False,
batch_size=args.batch_size, params_transform = params_transform,
shuffle=False, num_workers=4)
print('val dataset len: {}'.format(len(valid_data.dataset)))
# model
model = rtpose_shufflenetV2.Network(width_multiplier=1.0)
#model = encoding.nn.DataParallelModel(model, device_ids=args.gpu_ids)
model = torch.nn.DataParallel(model).cuda()
writer = SummaryWriter(log_dir=args.logdir)
trainable_vars = [param for param in model.parameters() if param.requires_grad]
optimizer = torch.optim.SGD(trainable_vars, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
lr_scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=5, verbose=True, threshold=0.0001, threshold_mode='rel', cooldown=3, min_lr=0, eps=1e-08)
best_val_loss = np.inf
model_save_filename = './network/weight/best_pose_ShuffleNetV2.pth'
for epoch in range(args.epochs):
# train for one epoch
train_loss = train(train_data, model, optimizer, epoch)
# evaluate on validation set
val_loss = validate(valid_data, model, epoch)
writer.add_scalars('data/scalar_group', {'train loss': train_loss,
'val loss': val_loss}, epoch)
lr_scheduler.step(val_loss)
is_best = val_loss<best_val_loss
best_val_loss = max(val_loss, best_val_loss)
if is_best:
torch.save(model.state_dict(), model_save_filename)
writer.export_scalars_to_json(os.path.join(args.model_path,"tensorboard/all_scalars.json"))
writer.close()