-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr3.py
61 lines (44 loc) · 1.61 KB
/
lr3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-
import sys, copy
import numpy as np
import lib.io
import lib.viz
import lib.cl
def main(argv):
input_filename_x = 'train_data.csv'
input_filename_y = 'train_labels.csv'
test_input_filename = 'test_data.csv'
lr_model_filename = 'lr3_classif.pkl'
model_comp_result_chart_filename = 'method_comp_res.png'
io = lib.io.IO()
viz = lib.viz.Viz()
cl = lib.cl.CL(io, viz)
# Read data
X, y = io.read_data(input_filename_x, input_filename_y)
test_x = io.read_data(test_input_filename, None)
print "There are " + str(len(X)) + " samples in the train set."
print "There are " + str(len(test_x)) + " samples in the test set."
test_x = np.matrix(test_x)
test_ids = range(1, len(test_x)+1)
# Remove outliers
X, y = cl.lof(np.matrix(X), np.matrix(y))
# Shuffle
X, y = io.shuffle(X, y)
# PCA
X = cl.pca(np.matrix(X), components=150).tolist()
test_x = cl.pca(np.matrix(test_x), components=150).tolist()
# Split data to train and validation set
val_ids, val_x, val_y = io.pick_set(X, y, 726)
train_ids, train_x, train_y = io.pick_set(X, y, 3200)
# Train
cl.lr_cl_train(train_x, train_y, filename=lr_model_filename)
# cl.lr_cl_load(lr_model_filename)
# Validate
cl.lr_cl_val(val_x, val_y)
# predict
pred_class, pred_proba = cl.lr_cl_pred(test_x)
# Output
io.write_classes('classes_lr3_result.csv', test_ids, pred_class)
io.write_probabilities('probabilities_lr3_result.csv', test_ids, pred_proba)
if __name__ == "__main__":
main(sys.argv[1:])