-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathga.t
580 lines (515 loc) · 17 KB
/
ga.t
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
local tableunion = require 'std.meta.tableunion'
local bits = require 'std.bit'
local String = require 'std.string'
local Math = require 'std.math'
local memoize = {}
local memovalues = {}
local terra countbits(x : int) : int return bits.ctpop(x) end
local terra bitsetsign(xs : int, ys : int) : int
var swapcount = 0
var bscan = 0
xs = xs >> 1
while xs ~= 0 or ys ~= 0 do
bscan = bscan + (ys and 1) -- current count of unique basis in ys
swapcount = swapcount + ((xs and 1) * bscan)
xs = xs >> 1
ys = ys >> 1
end
return terralib.select(swapcount % 2 == 0, 1, -1)
end
local function getbasis(x)
local b = x.metamethods.basis
if not b then
error(tostring(x) .. " is not a multivector!")
end
return b
end
local function prettycomponent(x)
local r = "e"
for i = 0,31 do
if bit.band(x,2^i) ~= 0 then
r = r .. tostring(i)
end
end
return r
end
local function divide(x,y)
local values = {}
if x:gettype().metamethods.N > 0 then
for i=0,x:gettype().metamethods.N-1 do
table.insert(values, `x.v[i] / y)
end
return `[x:gettype()]{array(values)}
end
return `x
end
local lookups = { x = 1, y = 2, z = 4, w = 8 }
function swizzlebasis(entryname)
local basis = 0
for i=1,#entryname do
local e = lookups[entryname:sub(i,i)]
if e then
basis = bit.bor(basis, e)
else
error (entryname:sub(i,i).." is not a valid component.")
end
end
return basis
end
function entrymissing(entryname, expr)
local index = expr:gettype().metamethods.basis[swizzlebasis(entryname)]
if index then
return `expr.v[ [index] ]
else
error("Tried to look up basis that doesn't exist in an "..expr:gettype().metamethods.grade.."-dimensional vector.")
end
end
local function setentry(entryname, expr, value)
local index = expr:gettype().metamethods.basis[swizzlebasis(entryname)]
if index then
return quote expr.v[ [index] ] = value end
else
error("Tried to set basis that doesn't exist in an "..expr:gettype().metamethods.grade.."-dimensional vector.")
end
end
local function typename(self)
if self.metamethods.N == 0 then
return "Zero"
end
if self.metamethods.grade == 0 then
return ("Scalar<%s>"):format(tostring(self.metamethods.type))
end
local prettybasis = {}
for v,i in pairs(self.metamethods.basis) do
table.insert(prettybasis, prettycomponent(v))
end
return ("%d-Vector(%s)<%s>"):format(self.metamethods.grade, table.concat(prettybasis, "+"), tostring(self.metamethods.type))
end
-- To keep compile times down, we have to split out declaring the type with filling it out.
local function mv(T, Components)
-- we sort the components before memoizing the function
table.sort(Components)
local memokey = memoize[T]
if not memokey then
memokey = {}; memoize[T] = memokey
end
for i,v in ipairs(Components) do
local n = memokey[v]
if not n then
n = {}; memokey[v] = n
end
memokey = n
end
if memovalues[memokey] then
return memovalues[memokey]
end
local struct s {
v : T[#Components]
}
s.metamethods.type = T
s.metamethods.N = #Components
s.metamethods.components = Components
s.metamethods.basis = {}
for i,v in ipairs(Components) do
if type(v) ~= "number" then
error("Expected a number but found "..type(v))
end
s.metamethods.basis[v] = i - 1
end
s.metamethods.set = 0
for k,v in pairs(s.metamethods.basis) do
s.metamethods.set = bit.bor(s.metamethods.set, k)
end
s.metamethods.grade = countbits(s.metamethods.set)
memovalues[memokey] = s
return s
end
local function convertscalar(x, T)
if x:gettype():isarithmetic() then
return `[mv(T, {0})](x)
end
return x
end
function checkbasiseq(basis, xb, yb) return countbits(basis) == (countbits(yb) - countbits(xb)) end
function checkbasisneq(basis, xb, yb) return countbits(basis) ~= (countbits(yb) - countbits(xb)) end
function checktrue(basis, xb, yb) return true end
local productinner = terralib.memoize(function(xt, yt, check, T)
return terra(x : xt, y : yt)
escape
local xbasis = getbasis(xt)
local ybasis = getbasis(yt)
-- multiply every component with every other component, only keep ones that satisfy check()
local results = {}
--local debugging = {}
for xb,xi in pairs(xbasis) do
for yb,yi in pairs(ybasis) do
local basis = bit.bxor(xb,yb)
if check(basis,xb,yb) then
if results[basis] == nil then
results[basis] = `0
end
--table.insert(debugging, quote C.printf(["%g" .. xi .. "_" .. prettycomponent(xb) .. "|" .. xb .. " * %g".. yi .. "_" .. prettycomponent(yb).. "|" .. yb .." = (" .. bitsetsign(xb, yb) .. ")%g_" .. prettycomponent(basis) .. "\n"], x.v[xi], y.v[yi], x.v[xi]*y.v[yi]) end)
results[basis] = `[ results[basis] ] + [bitsetsign(xb, yb)]*x.v[xi]*y.v[yi]
end
end
end
local components = {}
for k,v in pairs(results) do table.insert(components, k) end
emit(quote
var m : mv(T, components)
escape
--for i,v in ipairs(debugging) do emit(v) end
local basis = m.type.metamethods.basis
for k,q in pairs(results) do
emit(quote m.v[ [basis[k]] ] = [q] end)
end
end
return m
end)
end
end
end)
function addinner(xt, yt)
local xbasis = getbasis(xt)
local ybasis = getbasis(yt)
local components = {}
tableunion(xbasis, ybasis, function(k) table.insert(components, k) end)
local tresult = mv(xt.metamethods.type, components)
return terra(x : xt, y : yt) : tresult
var m : tresult
escape
for k,i in pairs(tresult.metamethods.basis) do
if not xbasis[k] then
emit(quote m.v[i] = y.v[ [ybasis[k]] ] end)
elseif not ybasis[k] then
emit(quote m.v[i] = x.v[ [xbasis[k]] ] end)
else
emit(quote m.v[i] = x.v[ [xbasis[k]] ] + y.v[ [ybasis[k]] ] end)
end
end
end
return m
end
end
local multivector
local product = function(x, y, check, T)
if x == nil or y == nil then
error("Cannot pass nil into product!")
end
x = convertscalar(x, T)
y = convertscalar(y, T)
local fn = productinner(x:gettype(), y:gettype(), check, T)
multivector(fn.type.returntype.metamethods.type,fn.type.returntype.metamethods.components)
return `[fn](x,y)
end
multivector = function(T, Components)
local s = mv(T, Components)
if s.metamethods.__typename then
return s
end
s.metamethods.__typename = typename
local N = s.metamethods.N
-- The absolute magnitude used to normalize multivectors.
terra s:magnitude() : T
escape
local acc = `[T](0)
for i = 0,N-1 do
acc = `[acc] + self.v[i]*self.v[i]
end
if T == float then
emit(quote return Math.sqrt_32(acc) end)
else
emit(quote return Math.sqrt_64([double](acc)) end)
end
end
end
terra s:mag2() : T
escape
local acc = `[T](0)
for i = 0,N-1 do
acc = `[acc] + self.v[i]*self.v[i]
end
emit(quote return acc end)
end
end
terra s:normalize() : s
var magnitude = self:magnitude()
var normalized : s
escape
for i = 0,N-1 do
emit(quote normalized.v[i] = self.v[i] / magnitude end)
end
end
return normalized
end
local function component_op(op, U)
return terra (self : &s, y : U) : s
var x : s = @self
for i = 0,N-1 do
escape
if U == s then
emit(quote x.v[i] = operator(op, x.v[i], y.v[i]) end)
else
emit(quote x.v[i] = operator(op, x.v[i], y) end)
end
end
end
return x
end
end
local ops = { "sub","add","mul","div" }
for i, op in ipairs(ops) do
s.methods["component_" .. op] = terralib.overloadedfunction("component_" .. op, {
component_op("__" .. op, s),
component_op("__" .. op, T)
}
)
end
-- The norm of an arbitrary multivector is itself times it's own conjugate, but we only have an efficient implementation up to 3 dimensions
s.methods.norm = macro(function(self)
local acc = `[T](0)
for k,i in pairs(s.metamethods.basis) do
local count = countbits(k)
if ((count % 2)) ~= 0 then
acc = `[acc] - self.v[i]*self.v[i]
else
acc = `[acc] + self.v[i]*self.v[i]
end
end
local e012 = nil
if s.metamethods.basis[0] and s.metamethods.basis[1+2+4] then if not e012 then e012 = `0 end e012 = `[e012] + 2*self.v[ [s.metamethods.basis[0]] ]*self.v[ [s.metamethods.basis[1+2+4]] ] end
if s.metamethods.basis[1+2] and s.metamethods.basis[4] then if not e012 then e012 = `0 end e012 = `[e012] - 2*self.v[ [s.metamethods.basis[1+2]] ]*self.v[ [s.metamethods.basis[4]] ] end
if s.metamethods.basis[1+4] and s.metamethods.basis[2] then if not e012 then e012 = `0 end e012 = `[e012] + 2*self.v[ [s.metamethods.basis[1+4]] ]*self.v[ [s.metamethods.basis[2]] ] end
if s.metamethods.basis[2+4] and s.metamethods.basis[1] then if not e012 then e012 = `0 end e012 = `[e012] - 2*self.v[ [s.metamethods.basis[2+4]] ]*self.v[ [s.metamethods.basis[1]] ] end
if e012 then
return `[multivector(T, {0, 1+2+4})]{array([acc], [e012])}
end
return `[multivector(T, {0})]{array([acc])}
end)
terra s:basis() : int
return [s.metamethods.set]
end
terra s:grade() : int
return [s.metamethods.grade]
end
-- Dot product only keeps components with the same grade
s.methods.dot = macro(function(x, y) return product(x,y, checkbasiseq, T) end)
-- Wedge product keeps all components that aren't in the dot product
s.methods.wedge = function(x, y) return product(x,y, checkbasisneq, T) end
s.metamethods.__xor = macro(function(self, v) return s.methods.wedge(self,v) end)
s.methods.wedge = macro(s.methods.wedge, s.methods.wedge)
s.metamethods.__entrymissing = macro(entrymissing)
s.metamethods.__setentry = macro(setentry)
terra s.metamethods.__eq(a : &s, b : &s) : bool
-- Because a and b are the same type, all the component basis vectors must match
escape
local acc = `true
for i = 0,N-1 do
acc = `[acc] and (a.v[i] == b.v[i])
end
emit(quote return [acc] end)
end
end
terra s.metamethods.__ne(a : &s, b : &s) : bool
return not [s.metamethods.__eq](a, b)
end
terra s.metamethods.__unm(a : &s): s
var res: s
escape
for i = 0, N-1 do
emit(quote res.v[i] = -a.v[i] end)
end
end
return res
end
s.metamethods.__add = macro(function(x, y)
x = convertscalar(x, T)
y = convertscalar(y, T)
local fn = addinner(x:gettype(), y:gettype())
multivector(fn.type.returntype.metamethods.type,fn.type.returntype.metamethods.components)
return `[fn](x,y)
end)
s.metamethods.__sub = macro(function(x, y) return `x + (-y) end)
s.metamethods.__mul = macro(function(x, y) return product(x, y, checktrue, T) end)
-- Performs a clifford conjugation: https://math.stackexchange.com/questions/3459273/why-is-the-clifford-conjugate-and-norm-defined-the-way-it-is
terra s:conjugate() : s
var v : s = @self
escape
for k,i in pairs(s.metamethods.basis) do
local grade = countbits(k)
if (grade % 2) ~= 0 then
emit(quote v.v[i] = -v.v[i] end)
end
if ((grade * (grade-1))/2) ~= 0 then
emit(quote v.v[i] = -v.v[i] end)
end
end
end
return v
end
-- Negates grades 3 and 4
local terra negate34(self : &s) : s
var v : s = @self
escape
for k,i in pairs(s.metamethods.basis) do
local grade = countbits(k)
if grade == 3 or grade == 4 then
emit(quote v.v[i] = -v.v[i] end)
end
end
end
return v
end
terra s:reversion() : s
var v : s = @self
escape
for k,i in pairs(s.metamethods.basis) do
local grade = countbits(k)
if ((grade * (grade-1))/2) ~= 0 then
emit(quote v.v[i] = -v.v[i] end)
end
end
end
return v
end
s.methods.gradeproj = macro(function(self, n)
local components = {}
local values = {}
for b,i in pairs(s.metamethods.basis) do
if countbits(b) == n:asvalue() then
table.insert(components, b)
table.insert(values, `self.v[ [i] ])
end
end
return `[multivector(T, components)]{array([values])}
end)
s.methods.project = macro(function(self, B) return `(self:dot(B))/B end)
s.methods.reject = macro(function(self, B) return `(self:wedge(B))/B end)
s.metamethods.__div = macro(function(x,y)
x = convertscalar(x, T)
y = convertscalar(y, T)
if y:gettype().metamethods.N == 1 and y:gettype().metamethods.basis[0] == 0 then
return divide(x, `y.v[0])
else
return `x * y:inverse()
end
end)
s.metamethods.__cast = function(from, to, exp)
if from:isarithmetic() and (to == s or to == &s) and s.metamethods.N == 1 and s.metamethods.basis[0] == 0 then
return `s{array([T]([exp]))}
end
if (from == s or from == &s) and to:isarithmetic() and s.metamethods.N == 1 and s.metamethods.basis[0] == 0 then
return `[to]([exp].v[0])
end
if from:ispointer() then
from = from.type
end
local isptr = to:ispointer()
if isptr then
to = to.type
end
if not from.metamethods.basis or not to.metamethods.basis then
error(("unknown conversion %s to %s"):format(tostring(from),tostring(to)))
end
local args = {}
for k,v in pairs(from.metamethods.basis) do
if not to.metamethods.basis[k] then
error(("%s does not have %s element from %s"):format(tostring(to), prettycomponent(k), tostring(from)))
end
end
for i,v in ipairs(to.metamethods.components) do
local index = from.metamethods.basis[v]
if not index then
table.insert(args, `[T](0))
else
table.insert(args, `[exp].v[ [index] ])
end
end
if isptr then
return quote var m = [to]{array([args])} in &m end
end
return `[to]{array([args])}
end
s.methods.tostring = macro(function(self)
local str = ""
for i=1,N do str = str .. "%g_" .. prettycomponent(Components[i]) .. " " end
local args = {}
for i=0,N-1 do table.insert(args, `self.v[ [i] ]) end
return `String.Format([str], [args])
end)
-- TODO: implement proper 4D inverse using the reversion: http://repository.essex.ac.uk/19733/1/MVInverse_rv_14Feb2017.pdf
terra s:inverse()
--var n = @self * self:conjugate()
var n = self:norm()
escape
if n.type == multivector(T,{0}) then
emit(quote return [divide(`self:conjugate(), `n.v[0])] end)
else
emit(quote
var r = n:reversion()
var nr = n*r
var sr = self:conjugate() * r
return [divide(`sr, `nr.v[0])]
end)
end
end
end
return s
end
-- This function represents a parameterized GA vector space of type T and dimensions N, which then contains appropriate basis elements and vector/bivector constructors
function GA(T, N)
local ga = {}
terra ga.scalar(a : T) : multivector(T, {0}) return a end
ga.zero = constant(`[multivector(T, {})]{})
local kvectors = {}
for i = 0,(2^N)-1 do
ga[prettycomponent(i)] = constant(`[multivector(T, {i})]{array([T](1))})
table.insert(kvectors, {})
end
-- generates a table for all possible multivector components to get the k-vector at that grade
for i = 1,(2^N)-1 do
table.insert(kvectors[countbits(i)], i)
end
for i = 1,N do
ga["vector"..i] = macro(function(...)
if select("#", ...) ~= #kvectors[i] then
error("Expected exactly "..#kvectors[i].." arguments for this "..i.."-vector!")
end
local args = {...}
local components = {}
local values = {}
-- Only include basis vectors for non-zero elements
for k,v in ipairs(args) do
if not (terralib.isquote(v) and v:gettype():isarithmetic() and v:asvalue() == 0) then
table.insert(components, kvectors[i][k])
table.insert(values, `[T]([v]))
end
end
if #values > 0 then
return `[multivector(T, components)]{array([values])}
end
return `[multivector(T, components)]{}
end)
ga["vector"..i.."_t"] = multivector(T, kvectors[i])
end
ga.exp = macro(function(v)
return quote
var i = v:normalize()
var th = v:magnitude()
in
(Math.cos(th) + i*Math.sin(th))
end
end)
-- pretty name aliases
ga.scalar_t = T
if ga.vector1 ~= nil then ga.vector = ga.vector1; ga.vector_t = ga.vector1_t end
if ga.vector2 ~= nil then ga.bivector = ga.vector2; ga.bivector_t = ga.vector2_t end
if ga.vector3 ~= nil then ga.trivector = ga.vector3; ga.trivector_t = ga.vector3_t end
if ga.vector4 ~= nil then ga.quadvector = ga.vector4; ga.quadvector_t = ga.vector4_t end
ga.bitsetsign = bitsetsign
ga.multivector = macro(function(c) return multivector(T, c) end, function(c) return multivector(T, c) end)
ga.PS = `[multivector(T, kvectors[N])]{array([T](1))}
ga.invPS = `[multivector(T, kvectors[N])]{array([T](1))}
return ga
end
return macro(GA, GA)