diff --git a/.github/workflows/ttnn-run-sweeps.yaml b/.github/workflows/ttnn-run-sweeps.yaml index fabd9c76050..bb894990686 100644 --- a/.github/workflows/ttnn-run-sweeps.yaml +++ b/.github/workflows/ttnn-run-sweeps.yaml @@ -263,6 +263,7 @@ on: - eltwise.ternary_backward.addcmul_bw - eltwise.ternary_backward.addcdiv_bw - embedding.embedding + - reduction.backward.prod_bw.prod_bw - reduction.topk.topk - reduction.argmax.argmax - reduction.prod diff --git a/tests/sweep_framework/sweeps/reduction/backward/prod_bw/prod_bw.py b/tests/sweep_framework/sweeps/reduction/backward/prod_bw/prod_bw.py new file mode 100644 index 00000000000..3c60e10d148 --- /dev/null +++ b/tests/sweep_framework/sweeps/reduction/backward/prod_bw/prod_bw.py @@ -0,0 +1,112 @@ +# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. + +# SPDX-License-Identifier: Apache-2.0 + +from typing import Optional, Tuple +from functools import partial + +import torch +import random +import ttnn +from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm +from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt + +from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time +from models.utility_functions import torch_random + +# Override the default timeout in seconds for hang detection. +TIMEOUT = 30 + +random.seed(0) + + +# Parameters provided to the test vector generator are defined here. +# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. +# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs. +# Developers can create their own generator functions and pass them to the parameters as inputs. +parameters = { + "xfail": { + "input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 256, 256], [1, 1, 32, 32], 16) + + gen_shapes([1, 1, 1, 1], [6, 12, 256, 256], [1, 1, 1, 1], 2), + "dim": [0, 1, 2, 3], + "grad_dtype": [ttnn.bfloat16, ttnn.bfloat8_b], + "input_a_dtype": [ttnn.bfloat16], + "input_layout": [ttnn.TILE_LAYOUT], + "grad_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + "input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + "output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], + } +} + + +# Invalidate vector is called during the generation phase where each vector will be passed in. +# If invalidated, the vector will still be stored but will be skipped. +# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid. +def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]: + if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT: + return True, "Unary operation requires tensor to be in Tile layout when working with non-sharded input tensor" + if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT and ( + test_vector["grad_dtype"] == ttnn.bfloat8_b or test_vector["input_a_dtype"] == ttnn.bfloat8_b + ): + return True, "bfloat8_b is only supported on tiled layout" + return False, None + + +# This is the run instructions for the test, defined by the developer. +# The run function must take the above-defined parameters as inputs. +# The runner will call this run function with each test vector, and the returned results from this function will be stored. +# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. pOtherwise, it will be the default ttnn device opened by the infra. +def run( + input_shape, + dim, + grad_dtype, + input_a_dtype, + input_layout, + grad_memory_config, + input_a_memory_config, + output_memory_config, + *, + device, +) -> list: + data_seed = random.randint(0, 20000000) + torch.manual_seed(data_seed) + + torch_input_tensor_a = gen_func_with_cast_tt( + partial(torch_random, low=0, high=100, dtype=torch.float32), input_a_dtype + )(input_shape) + torch_input_tensor_a.requires_grad = True + torch_input_tensor_a.retain_grad() + + max_dim = len(input_shape) - 1 + dim = random.randint(-max_dim - 1, max_dim) + + intermediate_result = torch.prod(torch_input_tensor_a, dim=dim, keepdim=True) + torch_grad_tensor = gen_func_with_cast_tt( + partial(torch_random, low=-100, high=100, dtype=torch.float32), grad_dtype + )(intermediate_result.shape) + + intermediate_result.backward(gradient=torch_grad_tensor) + torch_output_tensor = torch_input_tensor_a.grad + + grad_tensor = ttnn.from_torch( + torch_grad_tensor, + dtype=grad_dtype, + layout=input_layout, + device=device, + memory_config=grad_memory_config, + ) + + input_tensor_a = ttnn.from_torch( + torch_input_tensor_a, + dtype=input_a_dtype, + layout=input_layout, + device=device, + memory_config=input_a_memory_config, + ) + + start_time = start_measuring_time() + output_tensor = ttnn.prod_bw(grad_tensor, input_tensor_a, dim=dim, memory_config=output_memory_config)[0] + output_tensor = ttnn.to_torch(output_tensor) + e2e_perf = stop_measuring_time(start_time) + + return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]