We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Run script + branch: https://github.com/shawwn/compare_gan/blob/2020-05-09/dynamicvars/run_bigrun61.sh
dataset.name = "danbooru_256" options.datasets = "gs://darnbooru-euw4a/datasets/danbooru2019-s/danbooru2019-s-0*,gs://darnbooru-euw4a/datasets/danbooru2019-s/danbooru2019-s-0*,gs://darnbooru-euw4a/datasets/imagenet/train-0*,gs://darnbooru-euw4a/datasets/flickr3m/flickr3m-0*,gs://darnbooru-euw4a/datasets/ffhq1024/ffhq1024-0*,gs://darnbooru-euw4a/datasets/portraits/portraits-0*,gs://darnbooru-euw4a/datasets/ffhq1024/ffhq1024-0*,gs://darnbooru-euw4a/datasets/portraits/portraits-0*" options.random_labels = True options.num_classes = 1000 train_imagenet_transform.crop_method = "random" options.z_dim = 140 resnet_biggan.Generator.ch = 128 resnet_biggan.Discriminator.ch = 128 resnet_biggan.Generator.blocks_with_attention = "128" resnet_biggan.Discriminator.blocks_with_attention = "128" options.architecture = "resnet_biggan_arch" ModularGAN.conditional = False options.batch_size = 2048 options.gan_class = @ModularGAN options.lamba = 1 options.training_steps = 250000 weights.initializer = "orthogonal" spectral_norm.singular_value = "auto" # Generator G.batch_norm_fn = @conditional_batch_norm G.spectral_norm = True ModularGAN.g_use_ema = True resnet_biggan.Generator.hierarchical_z = True resnet_biggan.Generator.embed_z = True resnet_biggan.Generator.embed_y = True standardize_batch.decay = 0.9 standardize_batch.epsilon = 1e-5 standardize_batch.use_moving_averages = False standardize_batch.use_cross_replica_mean = None # Discriminator options.disc_iters = 2 D.spectral_norm = True resnet_biggan.Discriminator.project_y = True # Loss and optimizer loss.fn = @hinge penalty.fn = @no_penalty ModularGAN.g_lr = 0.0000666 ModularGAN.d_lr = 0.0005 ModularGAN.g_lr_mul = 1.0 ModularGAN.d_lr_mul = 1.0 ModularGAN.g_optimizer_fn = @tf.train.AdamOptimizer ModularGAN.d_optimizer_fn = @tf.train.AdamOptimizer tf.train.AdamOptimizer.beta1 = 0.0 tf.train.AdamOptimizer.beta2 = 0.999 z.distribution_fn = @tf.random.normal eval_z.distribution_fn = @tf.random.normal run_config.experimental_host_call_every_n_steps = 50 TpuSummaries.save_image_steps = 50 #run_config.iterations_per_loop = 500 run_config.iterations_per_loop = 50 run_config.save_checkpoints_steps = 250 options.d_flood = -128.0 options.g_flood = -128.0 options.d_stop_g_above = 128.0 options.g_stop_d_above = 128.0 options.d_stop_d_below = -128.0 options.g_stop_g_below = -128.0 # Try out new options ModularGAN.experimental_joint_gen_for_disc = True ModularGAN.experimental_force_graph_unroll = True options.d_stop_d_below = 0.20 options.g_stop_g_below = 0.05 #options.d_stop_g_above = 1.00 options.g_stop_d_above = 1.50 ModularGAN.g_use_ema = True #options.disc_iters = 1 ModularGAN.experimental_joint_gen_for_disc = False ModularGAN.experimental_force_graph_unroll = False run_config.iterations_per_loop = 50 TpuSummaries.save_image_steps = 50 #options.transpose_input = True # for performance options.disc_iters = 2 ModularGAN.experimental_joint_gen_for_disc = True ModularGAN.experimental_force_graph_unroll = True
ModularGAN.g_lr_mul = 1.0 ModularGAN.d_lr_mul = 1.0
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Run script + branch: https://github.com/shawwn/compare_gan/blob/2020-05-09/dynamicvars/run_bigrun61.sh
The text was updated successfully, but these errors were encountered: