-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathBatchDatsetReader.py
122 lines (106 loc) · 4.44 KB
/
BatchDatsetReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
Code ideas from https://github.com/Newmu/dcgan and tensorflow mnist dataset reader
"""
import numpy as np
# import scipy.misc as misc
import cv2
import os
class BatchDatset:
files = []
images = []
annotations = []
image_options = {}
batch_offset = 0
epochs_completed = 0
def __init__(self, datadir='gen_imgs', dataset_file='dataset.txt', image_options={'resize': True, 'resize_size': (1024, 48)}):
"""
Intialize a generic file reader with batching for list of files
:param dataset_file: list of file records to read -
sample record: {'image': f, 'annotation': annotation_file, 'filename': filename}
:param image_options: A dictionary of options for modifying the output image
Available options:
resize = True/ False
resize_size = #size of output image - does bilinear resize
color=True/False
"""
print("Initializing Batch Dataset Reader...")
print(image_options)
f = open(dataset_file, 'r')
self.files = f.readlines()
self.image_options = image_options
self.datadir = datadir
self._read_images()
def _read_images(self):
self.images = np.array([eval(filename)[0] for filename in self.files])
self.annotations = np.array([eval(filename)[1:] for filename in self.files])
print (self.images.shape)
print (self.annotations.shape)
def _transform(self, filename):
image = cv2.imread(filename, 0)
if image is None:
return None
# if self.__channels and len(image.shape) < 3: # make sure images are of shape(h,w,3)
# image = np.array([image for i in range(3)])
if self.image_options.get("resize", False) and self.image_options["resize"]:
resize_size = self.image_options["resize_size"]
resize_image = cv2.resize(image, resize_size)
else:
resize_image = image
return np.expand_dims(np.array(resize_image)/255.0, axis=3)
def get_records(self):
return self.images, self.annotations
def reset_batch_offset(self, offset=0):
self.batch_offset = offset
def next_batch(self, batch_size):
start = self.batch_offset
self.batch_offset += batch_size
if self.batch_offset > len(self.images):
# Finished epoch
self.epochs_completed += 1
print("****************** Epochs completed: " + str(self.epochs_completed) + "******************")
# Shuffle the data
perm = np.arange(len(self.images))
np.random.shuffle(perm)
self.images = self.images[perm]
self.annotations = self.annotations[perm]
# Start next epoch
start = 0
self.batch_offset = batch_size
end = self.batch_offset
im_names = self.images[start:end]
arr = []
for elem in im_names:
tmp = self._transform(os.path.join(self.datadir, elem))
if tmp is None:
continue
arr.append(tmp)
imgs = np.array(arr)
# imgs = np.array([self._transform(os.path.join(self.datadir, elem)) for elem in im_names])
annotations = self.annotations[start:end]
labels = np.zeros((len(annotations), self.image_options["resize_size"][0]))
for i in range(len(annotations)):
labels[i][annotations[i]] = 1
labels = np.expand_dims(labels, axis=1) # [80,1, 1024]
labels = np.expand_dims(labels, axis=3) # [80,1, 1024,1]
return imgs, labels
def get_random_batch(self, batch_size):
indexes = np.random.randint(0, len(self.images), size=[batch_size]).tolist()
im_names = self.images[indexes]
arr = []
for elem in im_names:
tmp = self._transform(os.path.join(self.datadir, elem))
if tmp is None:
continue
arr.append(tmp)
# imgs = np.array([self._transform(os.path.join(self.datadir, elem)) for elem in im_names])
imgs = np.array(arr)
annotations = self.annotations[indexes]
labels = np.zeros((len(annotations), self.image_options["resize_size"][0]))
for i in range(len(annotations)):
labels[i][annotations[i]] = 1
labels = np.expand_dims(labels, axis=1) # [80,1, 1024]
labels = np.expand_dims(labels, axis=3) # [80,1, 1024,1]
return imgs, labels
# data = BatchDatset()
# a = data.next_batch(3)
# print a