-
Notifications
You must be signed in to change notification settings - Fork 0
876 lines (815 loc) · 26.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
module ietf-ip {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-ip";
prefix ip;
import ietf-interfaces {
prefix if;
}
import ietf-inet-types {
prefix inet;
}
import ietf-yang-types {
prefix yang;
}
organization
"IETF NETMOD (Network Modeling) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/netmod/>
WG List: <mailto:[email protected]>
Editor: Martin Bjorklund
<mailto:[email protected]>";
description
"This module contains a collection of YANG definitions for
managing IP implementations.
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8344; see
the RFC itself for full legal notices.";
revision 2018-02-22 {
description
"Updated to support NMDA.";
reference
"RFC 8344: A YANG Data Model for IP Management";
}
revision 2014-06-16 {
description
"Initial revision.";
reference
"RFC 7277: A YANG Data Model for IP Management";
}
/*
* Features
*/
feature ipv4-non-contiguous-netmasks {
description
"Indicates support for configuring non-contiguous
subnet masks.";
}
feature ipv6-privacy-autoconf {
description
"Indicates support for privacy extensions for stateless address
autoconfiguration in IPv6.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6";
}
/*
* Typedefs
*/
typedef ip-address-origin {
type enumeration {
enum other {
description
"None of the following.";
}
enum static {
description
"Indicates that the address has been statically
configured -- for example, using the Network Configuration
Protocol (NETCONF) or a command line interface.";
}
enum dhcp {
description
"Indicates an address that has been assigned to this
system by a DHCP server.";
}
enum link-layer {
description
"Indicates an address created by IPv6 stateless
autoconfiguration that embeds a link-layer address in its
interface identifier.";
}
enum random {
description
"Indicates an address chosen by the system at
random, e.g., an IPv4 address within 169.254/16, a
temporary address as described in RFC 4941, or a
semantically opaque address as described in RFC 7217.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
RFC 7217: A Method for Generating Semantically Opaque
Interface Identifiers with IPv6 Stateless
Address Autoconfiguration (SLAAC)";
}
}
description
"The origin of an address.";
}
typedef neighbor-origin {
type enumeration {
enum other {
description
"None of the following.";
}
enum static {
description
"Indicates that the mapping has been statically
configured -- for example, using NETCONF or a command line
interface.";
}
enum dynamic {
description
"Indicates that the mapping has been dynamically resolved
using, for example, IPv4 ARP or the IPv6 Neighbor
Discovery protocol.";
}
}
description
"The origin of a neighbor entry.";
}
/*
* Data nodes
*/
augment "/if:interfaces/if:interface" {
description
"IP parameters on interfaces.
If an interface is not capable of running IP, the server
must not allow the client to configure these parameters.";
container ipv4 {
presence
"Enables IPv4 unless the 'enabled' leaf
(which defaults to 'true') is set to 'false'";
description
"Parameters for the IPv4 address family.";
leaf enabled {
type boolean;
default true;
description
"Controls whether IPv4 is enabled or disabled on this
interface. When IPv4 is enabled, this interface is
connected to an IPv4 stack, and the interface can send
and receive IPv4 packets.";
}
leaf forwarding {
type boolean;
default false;
description
"Controls IPv4 packet forwarding of datagrams received by,
but not addressed to, this interface. IPv4 routers
forward datagrams. IPv4 hosts do not (except those
source-routed via the host).";
}
leaf mtu {
type uint16 {
range "68..max";
}
units "octets";
description
"The size, in octets, of the largest IPv4 packet that the
interface will send and receive.
The server may restrict the allowed values for this leaf,
depending on the interface's type.
If this leaf is not configured, the operationally used MTU
depends on the interface's type.";
reference
"RFC 791: Internet Protocol";
}
list address {
key "ip";
description
"The list of IPv4 addresses on the interface.";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address on the interface.";
}
choice subnet {
mandatory true;
description
"The subnet can be specified as a prefix length or,
if the server supports non-contiguous netmasks, as
a netmask.";
leaf prefix-length {
type uint8 {
range "0..32";
}
description
"The length of the subnet prefix.";
}
leaf netmask {
if-feature ipv4-non-contiguous-netmasks;
type yang:dotted-quad;
description
"The subnet specified as a netmask.";
}
}
leaf origin {
type ip-address-origin;
config false;
description
"The origin of this address.";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv4 addresses to
link-layer addresses.
Entries in this list in the intended configuration are
used as static entries in the ARP Cache.
In the operational state, this list represents the ARP
Cache.";
reference
"RFC 826: An Ethernet Address Resolution Protocol";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
mandatory true;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
config false;
description
"The origin of this neighbor entry.";
}
}
}
container ipv6 {
presence
"Enables IPv6 unless the 'enabled' leaf
(which defaults to 'true') is set to 'false'";
description
"Parameters for the IPv6 address family.";
leaf enabled {
type boolean;
default true;
description
"Controls whether IPv6 is enabled or disabled on this
interface. When IPv6 is enabled, this interface is
connected to an IPv6 stack, and the interface can send
and receive IPv6 packets.";
}
leaf forwarding {
type boolean;
default false;
description
"Controls IPv6 packet forwarding of datagrams received by,
but not addressed to, this interface. IPv6 routers
forward datagrams. IPv6 hosts do not (except those
source-routed via the host).";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 6.2.1, IsRouter";
}
leaf mtu {
type uint32 {
range "1280..max";
}
units "octets";
description
"The size, in octets, of the largest IPv6 packet that the
interface will send and receive.
The server may restrict the allowed values for this leaf,
depending on the interface's type.
If this leaf is not configured, the operationally used MTU
depends on the interface's type.";
reference
"RFC 8200: Internet Protocol, Version 6 (IPv6)
Specification
Section 5";
}
list address {
key "ip";
description
"The list of IPv6 addresses on the interface.";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address on the interface.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
mandatory true;
description
"The length of the subnet prefix.";
}
leaf origin {
type ip-address-origin;
config false;
description
"The origin of this address.";
}
leaf status {
type enumeration {
enum preferred {
description
"This is a valid address that can appear as the
destination or source address of a packet.";
}
enum deprecated {
description
"This is a valid but deprecated address that should
no longer be used as a source address in new
communications, but packets addressed to such an
address are processed as expected.";
}
enum invalid {
description
"This isn't a valid address, and it shouldn't appear
as the destination or source address of a packet.";
}
enum inaccessible {
description
"The address is not accessible because the interface
to which this address is assigned is not
operational.";
}
enum unknown {
description
"The status cannot be determined for some reason.";
}
enum tentative {
description
"The uniqueness of the address on the link is being
verified. Addresses in this state should not be
used for general communication and should only be
used to determine the uniqueness of the address.";
}
enum duplicate {
description
"The address has been determined to be non-unique on
the link and so must not be used.";
}
enum optimistic {
description
"The address is available for use, subject to
restrictions, while its uniqueness on a link is
being verified.";
}
}
config false;
description
"The status of an address. Most of the states correspond
to states from the IPv6 Stateless Address
Autoconfiguration protocol.";
reference
"RFC 4293: Management Information Base for the
Internet Protocol (IP)
- IpAddressStatusTC
RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv6 addresses to
link-layer addresses.
Entries in this list in the intended configuration are
used as static entries in the Neighbor Cache.
In the operational state, this list represents the
Neighbor Cache.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
mandatory true;
description
"The link-layer address of the neighbor node.
In the operational state, if the neighbor's 'state' leaf
is 'incomplete', this leaf is not instantiated.";
}
leaf origin {
type neighbor-origin;
config false;
description
"The origin of this neighbor entry.";
}
leaf is-router {
type empty;
config false;
description
"Indicates that the neighbor node acts as a router.";
}
leaf state {
type enumeration {
enum incomplete {
description
"Address resolution is in progress, and the
link-layer address of the neighbor has not yet been
determined.";
}
enum reachable {
description
"Roughly speaking, the neighbor is known to have been
reachable recently (within tens of seconds ago).";
}
enum stale {
description
"The neighbor is no longer known to be reachable, but
until traffic is sent to the neighbor no attempt
should be made to verify its reachability.";
}
enum delay {
description
"The neighbor is no longer known to be reachable, and
traffic has recently been sent to the neighbor.
Rather than probe the neighbor immediately, however,
delay sending probes for a short while in order to
give upper-layer protocols a chance to provide
reachability confirmation.";
}
enum probe {
description
"The neighbor is no longer known to be reachable, and
unicast Neighbor Solicitation probes are being sent
to verify reachability.";
}
}
config false;
description
"The Neighbor Unreachability Detection state of this
entry.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 7.3.2";
}
}
leaf dup-addr-detect-transmits {
type uint32;
default 1;
description
"The number of consecutive Neighbor Solicitation messages
sent while performing Duplicate Address Detection on a
tentative address. A value of zero indicates that
Duplicate Address Detection is not performed on
tentative addresses. A value of one indicates a single
transmission with no follow-up retransmissions.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
container autoconf {
description
"Parameters to control the autoconfiguration of IPv6
addresses, as described in RFC 4862.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
leaf create-global-addresses {
type boolean;
default true;
description
"If enabled, the host creates global addresses as
described in RFC 4862.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration
Section 5.5";
}
leaf create-temporary-addresses {
if-feature ipv6-privacy-autoconf;
type boolean;
default false;
description
"If enabled, the host creates temporary addresses as
described in RFC 4941.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6";
}
leaf temporary-valid-lifetime {
if-feature ipv6-privacy-autoconf;
type uint32;
units "seconds";
default 604800;
description
"The time period during which the temporary address
is valid.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
- TEMP_VALID_LIFETIME";
}
leaf temporary-preferred-lifetime {
if-feature ipv6-privacy-autoconf;
type uint32;
units "seconds";
default 86400;
description
"The time period during which the temporary address is
preferred.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
- TEMP_PREFERRED_LIFETIME";
}
}
}
}
/*
* Legacy operational state data nodes
*/
augment "/if:interfaces-state/if:interface" {
status deprecated;
description
"Data nodes for the operational state of IP on interfaces.";
container ipv4 {
presence
"Present if IPv4 is enabled on this interface";
config false;
status deprecated;
description
"Interface-specific parameters for the IPv4 address family.";
leaf forwarding {
type boolean;
status deprecated;
description
"Indicates whether IPv4 packet forwarding is enabled or
disabled on this interface.";
}
leaf mtu {
type uint16 {
range "68..max";
}
units "octets";
status deprecated;
description
"The size, in octets, of the largest IPv4 packet that the
interface will send and receive.";
reference
"RFC 791: Internet Protocol";
}
list address {
key "ip";
status deprecated;
description
"The list of IPv4 addresses on the interface.";
leaf ip {
type inet:ipv4-address-no-zone;
status deprecated;
description
"The IPv4 address on the interface.";
}
choice subnet {
status deprecated;
description
"The subnet can be specified as a prefix length or,
if the server supports non-contiguous netmasks, as
a netmask.";
leaf prefix-length {
type uint8 {
range "0..32";
}
status deprecated;
description
"The length of the subnet prefix.";
}
leaf netmask {
if-feature ipv4-non-contiguous-netmasks;
type yang:dotted-quad;
status deprecated;
description
"The subnet specified as a netmask.";
}
}
leaf origin {
type ip-address-origin;
status deprecated;
description
"The origin of this address.";
}
}
list neighbor {
key "ip";
status deprecated;
description
"A list of mappings from IPv4 addresses to
link-layer addresses.
This list represents the ARP Cache.";
reference
"RFC 826: An Ethernet Address Resolution Protocol";
leaf ip {
type inet:ipv4-address-no-zone;
status deprecated;
description
"The IPv4 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
status deprecated;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
status deprecated;
description
"The origin of this neighbor entry.";
}
}
}
container ipv6 {
presence
"Present if IPv6 is enabled on this interface";
config false;
status deprecated;
description
"Parameters for the IPv6 address family.";
leaf forwarding {
type boolean;
default false;
status deprecated;
description
"Indicates whether IPv6 packet forwarding is enabled or
disabled on this interface.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 6.2.1, IsRouter";
}
leaf mtu {
type uint32 {
range "1280..max";
}
units "octets";
status deprecated;
description
"The size, in octets, of the largest IPv6 packet that the
interface will send and receive.";
reference
"RFC 8200: Internet Protocol, Version 6 (IPv6)
Specification
Section 5";
}
list address {
key "ip";
status deprecated;
description
"The list of IPv6 addresses on the interface.";
leaf ip {
type inet:ipv6-address-no-zone;
status deprecated;
description
"The IPv6 address on the interface.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
mandatory true;
status deprecated;
description
"The length of the subnet prefix.";
}
leaf origin {
type ip-address-origin;
status deprecated;
description
"The origin of this address.";
}
leaf status {
type enumeration {
enum preferred {
description
"This is a valid address that can appear as the
destination or source address of a packet.";
}
enum deprecated {
description
"This is a valid but deprecated address that should
no longer be used as a source address in new
communications, but packets addressed to such an
address are processed as expected.";
}
enum invalid {
description
"This isn't a valid address, and it shouldn't appear
as the destination or source address of a packet.";
}
enum inaccessible {
description
"The address is not accessible because the interface
to which this address is assigned is not
operational.";
}
enum unknown {
description
"The status cannot be determined for some reason.";
}
enum tentative {
description
"The uniqueness of the address on the link is being
verified. Addresses in this state should not be
used for general communication and should only be
used to determine the uniqueness of the address.";
}
enum duplicate {
description
"The address has been determined to be non-unique on
the link and so must not be used.";
}
enum optimistic {
description
"The address is available for use, subject to
restrictions, while its uniqueness on a link is
being verified.";
}
}
status deprecated;
description
"The status of an address. Most of the states correspond
to states from the IPv6 Stateless Address
Autoconfiguration protocol.";
reference
"RFC 4293: Management Information Base for the
Internet Protocol (IP)
- IpAddressStatusTC
RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
}
list neighbor {
key "ip";
status deprecated;
description
"A list of mappings from IPv6 addresses to
link-layer addresses.
This list represents the Neighbor Cache.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";
leaf ip {
type inet:ipv6-address-no-zone;
status deprecated;
description
"The IPv6 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
status deprecated;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
status deprecated;
description
"The origin of this neighbor entry.";
}
leaf is-router {
type empty;
status deprecated;
description
"Indicates that the neighbor node acts as a router.";
}
leaf state {
type enumeration {
enum incomplete {
description
"Address resolution is in progress, and the
link-layer address of the neighbor has not yet been
determined.";
}
enum reachable {
description
"Roughly speaking, the neighbor is known to have been
reachable recently (within tens of seconds ago).";
}
enum stale {
description
"The neighbor is no longer known to be reachable, but
until traffic is sent to the neighbor no attempt
should be made to verify its reachability.";
}
enum delay {
description
"The neighbor is no longer known to be reachable, and
traffic has recently been sent to the neighbor.
Rather than probe the neighbor immediately, however,
delay sending probes for a short while in order to
give upper-layer protocols a chance to provide
reachability confirmation.";
}
enum probe {
description
"The neighbor is no longer known to be reachable, and
unicast Neighbor Solicitation probes are being sent
to verify reachability.";
}
}
status deprecated;
description
"The Neighbor Unreachability Detection state of this
entry.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 7.3.2";
}
}
}
}
}