-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvanced_learning.py
234 lines (186 loc) · 8.19 KB
/
advanced_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# advanced_learning.py
from typing import Dict, List, Any
import asyncio
import numpy as np
from datetime import datetime
import json
import sqlite3
class MetaLearningController:
def __init__(self):
self.learning_strategies = {}
self.policy_pool = {}
self.adaptation_history = []
async def adapt_learning_strategy(self, performance_metrics: Dict):
"""Adapt learning strategies based on performance"""
strategy_performance = self.evaluate_strategy_performance(performance_metrics)
# Update policy pool
for strategy, performance in strategy_performance.items():
self.policy_pool[strategy] = {
'weight': self.calculate_strategy_weight(performance),
'adaptation_rate': self.determine_adaptation_rate(performance)
}
return await self.generate_optimal_strategy()
def calculate_strategy_weight(self, performance: Dict) -> float:
"""Calculate strategy weight based on performance metrics"""
return np.mean([
performance.get('accuracy', 0),
performance.get('efficiency', 0),
performance.get('adaptation_speed', 0)
])
class KnowledgeSharingNetwork:
def __init__(self):
self.shared_knowledge = sqlite3.connect('shared_knowledge.db')
self.knowledge_buffer = asyncio.Queue()
self.subscribers = {}
async def share_knowledge(self, source_agent: str, knowledge: Dict):
"""Share knowledge across agents"""
# Process and enrich knowledge
enriched_knowledge = self.enrich_knowledge(knowledge)
# Store in shared knowledge base
await self.store_shared_knowledge(enriched_knowledge)
# Notify relevant agents
await self.notify_subscribers(source_agent, enriched_knowledge)
def enrich_knowledge(self, knowledge: Dict) -> Dict:
"""Enrich knowledge with metadata and relationships"""
return {
**knowledge,
'metadata': {
'timestamp': datetime.now().isoformat(),
'confidence': self.calculate_confidence(knowledge),
'relationships': self.identify_relationships(knowledge)
}
}
class RealTimeMonitor:
def __init__(self):
self.metrics_store = sqlite3.connect('metrics.db')
self.alert_thresholds = {}
self.performance_history = []
async def monitor_performance(self):
"""Continuous performance monitoring"""
while True:
metrics = await self.collect_metrics()
analysis = self.analyze_metrics(metrics)
if self.should_trigger_action(analysis):
await self.trigger_adaptive_action(analysis)
await asyncio.sleep(1) # Monitor frequency
def analyze_metrics(self, metrics: Dict) -> Dict:
"""Analyze collected metrics"""
return {
'system_health': self.calculate_system_health(metrics),
'performance_trends': self.analyze_trends(metrics),
'bottlenecks': self.identify_bottlenecks(metrics),
'recommendations': self.generate_recommendations(metrics)
}
class AdaptivePromptOptimizer:
def __init__(self):
self.template_store = {}
self.performance_history = []
self.optimization_rules = self.load_optimization_rules()
async def optimize_prompt(self, template_id: str, performance: Dict):
"""Optimize prompt template based on performance"""
template = self.template_store.get(template_id)
if not template:
return None
optimization_score = self.calculate_optimization_score(performance)
if optimization_score < self.optimization_threshold:
optimized_template = await self.generate_optimized_template(
template,
performance
)
await self.update_template(template_id, optimized_template)
return optimized_template
return template
async def generate_optimized_template(self, template: str, performance: Dict) -> str:
"""Generate optimized version of template"""
improvements = []
for rule in self.optimization_rules:
if rule.should_apply(template, performance):
improvements.append(rule.apply(template))
return self.combine_improvements(template, improvements)
class BackupRecoverySystem:
def __init__(self):
self.backup_store = sqlite3.connect('backups.db')
self.backup_config = self.load_backup_config()
async def schedule_backup(self):
"""Schedule and manage system backups"""
while True:
if self.should_create_backup():
await self.create_backup()
await asyncio.sleep(self.backup_config['interval'])
async def create_backup(self):
"""Create system-wide backup"""
backup_data = {
'timestamp': datetime.now().isoformat(),
'knowledge_bases': await self.backup_knowledge_bases(),
'system_state': await self.backup_system_state(),
'agent_states': await self.backup_agent_states()
}
backup_id = await self.store_backup(backup_data)
await self.cleanup_old_backups()
return backup_id
async def recover_from_backup(self, backup_id: str):
"""Recover system from backup"""
backup_data = await self.load_backup(backup_id)
# Systematic recovery process
await self.restore_knowledge_bases(backup_data['knowledge_bases'])
await self.restore_system_state(backup_data['system_state'])
await self.restore_agent_states(backup_data['agent_states'])
return await self.verify_recovery()
# Integration with main system
class EnhancedMOPSystem:
def __init__(self):
self.meta_learning = MetaLearningController()
self.knowledge_sharing = KnowledgeSharingNetwork()
self.monitor = RealTimeMonitor()
self.prompt_optimizer = AdaptivePromptOptimizer()
self.backup_system = BackupRecoverySystem()
async def initialize(self):
"""Initialize enhanced system"""
# Start monitoring
asyncio.create_task(self.monitor.monitor_performance())
# Schedule backups
asyncio.create_task(self.backup_system.schedule_backup())
# Initialize knowledge sharing
await self.knowledge_sharing.initialize()
# Initialize prompt optimization
await self.prompt_optimizer.initialize()
async def process_input(self, input_data: Dict):
"""Process input with enhanced features"""
try:
# Optimize prompt
optimized_prompt = await self.prompt_optimizer.optimize_prompt(
input_data['template_id'],
self.monitor.get_current_performance()
)
# Process with optimized prompt
result = await self.process_with_prompt(optimized_prompt, input_data)
# Share knowledge
await self.knowledge_sharing.share_knowledge(
source_agent='main',
knowledge=result
)
# Adapt learning strategy
await self.meta_learning.adapt_learning_strategy(
self.monitor.get_performance_metrics()
)
return result
except Exception as e:
# Trigger recovery if needed
await self.handle_system_error(e)
raise
def main():
"""Main entry point"""
system = EnhancedMOPSystem()
async def run():
await system.initialize()
# Example usage
input_data = {
'template_id': 'memory_processing',
'content': 'Example input for processing',
'context': {'previous_state': 'some_state'}
}
result = await system.process_input(input_data)
print("Processing Result:", result)
asyncio.run(run())
if __name__ == "__main__":
main()