-
Notifications
You must be signed in to change notification settings - Fork 287
/
Copy pathvocabularies.py
240 lines (198 loc) · 11.3 KB
/
vocabularies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from itertools import chain
from typing import Optional, Dict, Iterable, Set, NamedTuple
import pickle
import os
from enum import Enum
from config import Config
import tensorflow as tf
from argparse import Namespace
from common import common
class VocabType(Enum):
Token = 1
Target = 2
Path = 3
SpecialVocabWordsType = Namespace
_SpecialVocabWords_OnlyOov = Namespace(
OOV='<OOV>'
)
_SpecialVocabWords_SeparateOovPad = Namespace(
PAD='<PAD>',
OOV='<OOV>'
)
_SpecialVocabWords_JoinedOovPad = Namespace(
PAD_OR_OOV='<PAD_OR_OOV>',
PAD='<PAD_OR_OOV>',
OOV='<PAD_OR_OOV>'
)
class Vocab:
def __init__(self, vocab_type: VocabType, words: Iterable[str],
special_words: Optional[SpecialVocabWordsType] = None):
if special_words is None:
special_words = Namespace()
self.vocab_type = vocab_type
self.word_to_index: Dict[str, int] = {}
self.index_to_word: Dict[int, str] = {}
self._word_to_index_lookup_table = None
self._index_to_word_lookup_table = None
self.special_words: SpecialVocabWordsType = special_words
for index, word in enumerate(chain(common.get_unique_list(special_words.__dict__.values()), words)):
self.word_to_index[word] = index
self.index_to_word[index] = word
self.size = len(self.word_to_index)
def save_to_file(self, file):
# Notice: From historical reasons, a saved vocab doesn't include special words.
special_words_as_unique_list = common.get_unique_list(self.special_words.__dict__.values())
nr_special_words = len(special_words_as_unique_list)
word_to_index_wo_specials = {word: idx for word, idx in self.word_to_index.items() if idx >= nr_special_words}
index_to_word_wo_specials = {idx: word for idx, word in self.index_to_word.items() if idx >= nr_special_words}
size_wo_specials = self.size - nr_special_words
pickle.dump(word_to_index_wo_specials, file)
pickle.dump(index_to_word_wo_specials, file)
pickle.dump(size_wo_specials, file)
@classmethod
def load_from_file(cls, vocab_type: VocabType, file, special_words: SpecialVocabWordsType) -> 'Vocab':
special_words_as_unique_list = common.get_unique_list(special_words.__dict__.values())
# Notice: From historical reasons, a saved vocab doesn't include special words,
# so they should be added upon loading.
word_to_index_wo_specials = pickle.load(file)
index_to_word_wo_specials = pickle.load(file)
size_wo_specials = pickle.load(file)
assert len(index_to_word_wo_specials) == len(word_to_index_wo_specials) == size_wo_specials
min_word_idx_wo_specials = min(index_to_word_wo_specials.keys())
if min_word_idx_wo_specials != len(special_words_as_unique_list):
raise ValueError(
"Error while attempting to load vocabulary `{vocab_type}` from file `{file_path}`. "
"The stored vocabulary has minimum word index {min_word_idx}, "
"while expecting minimum word index to be {nr_special_words} "
"because having to use {nr_special_words} special words, which are: {special_words}. "
"Please check the parameter `config.SEPARATE_OOV_AND_PAD`.".format(
vocab_type=vocab_type, file_path=file.name, min_word_idx=min_word_idx_wo_specials,
nr_special_words=len(special_words_as_unique_list), special_words=special_words))
vocab = cls(vocab_type, [], special_words)
vocab.word_to_index = {**word_to_index_wo_specials,
**{word: idx for idx, word in enumerate(special_words_as_unique_list)}}
vocab.index_to_word = {**index_to_word_wo_specials,
**{idx: word for idx, word in enumerate(special_words_as_unique_list)}}
vocab.size = size_wo_specials + len(special_words_as_unique_list)
return vocab
@classmethod
def create_from_freq_dict(cls, vocab_type: VocabType, word_to_count: Dict[str, int], max_size: int,
special_words: Optional[SpecialVocabWordsType] = None):
if special_words is None:
special_words = Namespace()
words_sorted_by_counts = sorted(word_to_count, key=word_to_count.get, reverse=True)
words_sorted_by_counts_and_limited = words_sorted_by_counts[:max_size]
return cls(vocab_type, words_sorted_by_counts_and_limited, special_words)
@staticmethod
def _create_word_to_index_lookup_table(word_to_index: Dict[str, int], default_value: int):
return tf.lookup.StaticHashTable(
tf.lookup.KeyValueTensorInitializer(
list(word_to_index.keys()), list(word_to_index.values()), key_dtype=tf.string, value_dtype=tf.int32),
default_value=tf.constant(default_value, dtype=tf.int32))
@staticmethod
def _create_index_to_word_lookup_table(index_to_word: Dict[int, str], default_value: str) \
-> tf.lookup.StaticHashTable:
return tf.lookup.StaticHashTable(
tf.lookup.KeyValueTensorInitializer(
list(index_to_word.keys()), list(index_to_word.values()), key_dtype=tf.int32, value_dtype=tf.string),
default_value=tf.constant(default_value, dtype=tf.string))
def get_word_to_index_lookup_table(self) -> tf.lookup.StaticHashTable:
if self._word_to_index_lookup_table is None:
self._word_to_index_lookup_table = self._create_word_to_index_lookup_table(
self.word_to_index, default_value=self.word_to_index[self.special_words.OOV])
return self._word_to_index_lookup_table
def get_index_to_word_lookup_table(self) -> tf.lookup.StaticHashTable:
if self._index_to_word_lookup_table is None:
self._index_to_word_lookup_table = self._create_index_to_word_lookup_table(
self.index_to_word, default_value=self.special_words.OOV)
return self._index_to_word_lookup_table
def lookup_index(self, word: tf.Tensor) -> tf.Tensor:
return self.get_word_to_index_lookup_table().lookup(word)
def lookup_word(self, index: tf.Tensor) -> tf.Tensor:
return self.get_index_to_word_lookup_table().lookup(index)
WordFreqDictType = Dict[str, int]
class Code2VecWordFreqDicts(NamedTuple):
token_to_count: WordFreqDictType
path_to_count: WordFreqDictType
target_to_count: WordFreqDictType
class Code2VecVocabs:
def __init__(self, config: Config):
self.config = config
self.token_vocab: Optional[Vocab] = None
self.path_vocab: Optional[Vocab] = None
self.target_vocab: Optional[Vocab] = None
# Used to avoid re-saving a non-modified vocabulary to a path it is already saved in.
self._already_saved_in_paths: Set[str] = set()
self._load_or_create()
def _load_or_create(self):
assert self.config.is_training or self.config.is_loading
if self.config.is_loading:
vocabularies_load_path = self.config.get_vocabularies_path_from_model_path(self.config.MODEL_LOAD_PATH)
if not os.path.isfile(vocabularies_load_path):
raise ValueError(
"Model dictionaries file is not found in model load dir. "
"Expecting file `{vocabularies_load_path}`.".format(vocabularies_load_path=vocabularies_load_path))
self._load_from_path(vocabularies_load_path)
else:
self._create_from_word_freq_dict()
def _load_from_path(self, vocabularies_load_path: str):
assert os.path.exists(vocabularies_load_path)
self.config.log('Loading model vocabularies from: `%s` ... ' % vocabularies_load_path)
with open(vocabularies_load_path, 'rb') as file:
self.token_vocab = Vocab.load_from_file(
VocabType.Token, file, self._get_special_words_by_vocab_type(VocabType.Token))
self.target_vocab = Vocab.load_from_file(
VocabType.Target, file, self._get_special_words_by_vocab_type(VocabType.Target))
self.path_vocab = Vocab.load_from_file(
VocabType.Path, file, self._get_special_words_by_vocab_type(VocabType.Path))
self.config.log('Done loading model vocabularies.')
self._already_saved_in_paths.add(vocabularies_load_path)
def _create_from_word_freq_dict(self):
word_freq_dict = self._load_word_freq_dict()
self.config.log('Word frequencies dictionaries loaded. Now creating vocabularies.')
self.token_vocab = Vocab.create_from_freq_dict(
VocabType.Token, word_freq_dict.token_to_count, self.config.MAX_TOKEN_VOCAB_SIZE,
special_words=self._get_special_words_by_vocab_type(VocabType.Token))
self.config.log('Created token vocab. size: %d' % self.token_vocab.size)
self.path_vocab = Vocab.create_from_freq_dict(
VocabType.Path, word_freq_dict.path_to_count, self.config.MAX_PATH_VOCAB_SIZE,
special_words=self._get_special_words_by_vocab_type(VocabType.Path))
self.config.log('Created path vocab. size: %d' % self.path_vocab.size)
self.target_vocab = Vocab.create_from_freq_dict(
VocabType.Target, word_freq_dict.target_to_count, self.config.MAX_TARGET_VOCAB_SIZE,
special_words=self._get_special_words_by_vocab_type(VocabType.Target))
self.config.log('Created target vocab. size: %d' % self.target_vocab.size)
def _get_special_words_by_vocab_type(self, vocab_type: VocabType) -> SpecialVocabWordsType:
if not self.config.SEPARATE_OOV_AND_PAD:
return _SpecialVocabWords_JoinedOovPad
if vocab_type == VocabType.Target:
return _SpecialVocabWords_OnlyOov
return _SpecialVocabWords_SeparateOovPad
def save(self, vocabularies_save_path: str):
if vocabularies_save_path in self._already_saved_in_paths:
return
with open(vocabularies_save_path, 'wb') as file:
self.token_vocab.save_to_file(file)
self.target_vocab.save_to_file(file)
self.path_vocab.save_to_file(file)
self._already_saved_in_paths.add(vocabularies_save_path)
def _load_word_freq_dict(self) -> Code2VecWordFreqDicts:
assert self.config.is_training
self.config.log('Loading word frequencies dictionaries from: %s ... ' % self.config.word_freq_dict_path)
with open(self.config.word_freq_dict_path, 'rb') as file:
token_to_count = pickle.load(file)
path_to_count = pickle.load(file)
target_to_count = pickle.load(file)
self.config.log('Done loading word frequencies dictionaries.')
# assert all(isinstance(item, WordFreqDictType) for item in {token_to_count, path_to_count, target_to_count})
return Code2VecWordFreqDicts(
token_to_count=token_to_count, path_to_count=path_to_count, target_to_count=target_to_count)
def get(self, vocab_type: VocabType) -> Vocab:
if not isinstance(vocab_type, VocabType):
raise ValueError('`vocab_type` should be `VocabType.Token`, `VocabType.Target` or `VocabType.Path`.')
if vocab_type == VocabType.Token:
return self.token_vocab
if vocab_type == VocabType.Target:
return self.target_vocab
if vocab_type == VocabType.Path:
return self.path_vocab