-
Notifications
You must be signed in to change notification settings - Fork 3
/
genCatalog.py
71 lines (69 loc) · 2.38 KB
/
genCatalog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import os
import numpy as np
from astropy.io import fits
# Commandline argument parser
parser = argparse.ArgumentParser()
parser.add_argument("dataDir", help="Directory for data", type=str)
parser.add_argument("saveFile", help="Output file", type=str)
args = parser.parse_args()
dataDir = args.dataDir
saveFile = args.saveFile
# Generate catalog
er = []
sc = []
zs = []
ra = []
dec = []
z = []
plate = []
mjd = []
fid = []
w = []
snp = []
snn = []
sns = []
o3w = []
o3s = []
for each in os.listdir(dataDir):
tmpDir = os.path.join(dataDir, each)
if os.path.isdir(tmpDir):
dDir = os.path.join(tmpDir, "candidates_doublet.txt")
try:
temp = np.loadtxt(dDir)
er.extend(temp[:, 0])
sc.extend(temp[:, 1])
zs.extend(temp[:, 2])
ra.extend(temp[:, 3])
dec.extend(temp[:, 4])
z.extend(temp[:, 5])
plate.extend(temp[:, 6])
mjd.extend(temp[:, 7])
fid.extend(temp[:, 8])
w.extend(temp[:, 9])
snp.extend(temp[:, 10])
snn.extend(temp[:, 11])
sns.extend(temp[:, 12])
o3w.extend(temp[:, 13])
o3s.extend(temp[:, 14])
except Exception:
pass
# Save to file
c0 = fits.Column(name="einsteinRadius", array=np.array(er), format='D')
c1 = fits.Column(name='score', array=np.array(sc), format='D')
c2 = fits.Column(name='zsource', array=np.array(zs), format='D')
c3 = fits.Column(name='ra', array=np.array(ra), format='D')
c4 = fits.Column(name='dec', array=np.array(dec), format='D')
c5 = fits.Column(name='z', array=np.array(z), format='D')
c6 = fits.Column(name='plate', array=np.array(plate), format='D')
c7 = fits.Column(name='mjd', array=np.array(mjd), format='D')
c8 = fits.Column(name='fiberid', array=np.array(fid), format='D')
c9 = fits.Column(name='wavelength', array=np.array(w), format='D')
ca = fits.Column(name='snPrevFiber', array=np.array(snp), format='D')
cb = fits.Column(name='snNextFiber', array=np.array(snn), format='D')
cc = fits.Column(name='snSpectra', array=np.array(sns), format='D')
cd = fits.Column(name='o3FoundWave', array=np.array(o3w), format='D')
ce = fits.Column(name='o3FoundSig', array=np.array(o3s), format='D')
t = fits.BinTableHDU.from_columns([c1, c2, c3, c4, c5, c6, c7, c8, c9, ca, cb,
cc, cd, ce])
t.writeto(saveFile, overwrite=True)