-
Notifications
You must be signed in to change notification settings - Fork 0
/
fcMat_generation.c
157 lines (134 loc) · 4.38 KB
/
fcMat_generation.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*******************************************************************************
*
* This routine imports roi data from csv file format and calculates the
* Pearsons Correlation coefficient for all roi combinations. These values are
* written to a NxN csv file (where N is the number of rois).
*
* Compile with: cc -o fcMat_generation fcMat_generation.c -lm
* Execute with: ./csv_read filename.csv
*
* Written by Thomas Campbell Arnold, Florida State University 2016
*
******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
int main(argc,argv)
int argc;
char *argv[];
{
FILE *f,*fp;
char *csv,*roi_string,*tr_string;
char delim;
// check for proper number of commandline arguements
if (argc != 4) {
fprintf(stderr, "\nUsage: %s <csv file> <number of rois> <number of TRs>\n",argv[0]);
exit(1);
}
//set filename equal to csv
csv = argv[1];
roi_string = argv[2];
tr_string = argv[3];
int ROIs = atoi(roi_string);
int TRs = atoi(tr_string);
fprintf(stderr, "\nxsum = %d\n",TRs);
fprintf(stderr, "\nxsum = %d\n",ROIs);
int i, j, val;
float *data[ROIs];
for (i=0; i<ROIs; i++){
data[i] = (float *)malloc(TRs * sizeof(float));
}
float temp;
// start timer
time_t tstart, tend;
tstart = time(0);
// open csv file
f = fopen(csv,"r");
// used to index matrix, start at zero
i=0;
j=0;
int n=0;
// read in the data to matrix
while(val = fscanf(f,"%f%c",&temp,&delim)){
if(i <= ROIs-1){
data[i][j] = temp;
if(i>=ROIs-1){
i=0;
j++;
if(j>=TRs){break;}
}else{
i++;
}
}else{
break;
}
}
// close csv file to write
fclose(f);
/***************************************************************************
*
* This section beneath is for calculating the correlation matrix, also
* known as the functional connectivity map (fcMat). Each roi is correlated
* with each other roi producing an NxN matrix where N is the number of
* rois.
*
***************************************************************************/
int k;
float x[TRs], y[TRs], xy[TRs], xsquare[TRs], ysquare[TRs];
float xsum, ysum, xysum, xsqr_sum, ysqr_sum;
long double num, deno;
long double coeff;
// open file for writing fcMap to
fp = fopen("fcMap.csv","w");
// loop through each combination of i,j from 1 to N
for(k=0; k<ROIs; k++){
for(j=0; j<ROIs; j++){
xsum = ysum = xysum = xsqr_sum = ysqr_sum = 0;
// set X and Y
for(n=0; n<TRs; n++){
x[n]=data[k][n];
}
for(n=0; n<TRs; n++){
y[n]=data[j][n];
}
/* find the needed data to manipulate correlation coeff */
for (i = 0; i < TRs; i++) {
xy[i] = x[i] * y[i];
xsquare[i] = x[i] * x[i];
ysquare[i] = y[i] * y[i];
xsum += x[i];
ysum = ysum + y[i];
xysum = xysum + xy[i];
xsqr_sum = xsqr_sum + xsquare[i];
ysqr_sum = ysqr_sum + ysquare[i];
}
// calculate numerator and denominator
// 1 formerly 1.0 for float type
num = 1 * ((TRs * xysum) - (xsum * ysum));
deno = 1 * ((TRs * xsqr_sum - xsum * xsum) * (TRs * ysqr_sum - ysum * ysum));
// calcualte correlation coefficient [ num/sqrt(deno) ]
coeff = num / sqrt(deno);
if (k==1 && j==0){
fprintf(stderr, "\nxsum = %f\n",xsum);
fprintf(stderr, "\nysum = %f\n",ysum);
fprintf(stderr, "\nxysum = %f\n",xysum);
fprintf(stderr, "\nxsqr_sum = %f\n",xsqr_sum);
fprintf(stderr, "\nysqr_sum = %f\n",ysqr_sum);
fprintf(stderr, "\nnum = %Lf\n",num);
fprintf(stderr, "\ndeno = %Lf\n",deno);
fprintf(stderr, "\ncoeff = %Lf\n",coeff);
}
// put corr coef in fcMap
fprintf(fp,"%Lf,",coeff);
}
fprintf(fp,"\n");
}
fclose(fp);
// call back time parameter
tend = time(0);
fprintf(stderr, "\nIt took %.3f second(s) to run this code.\n",difftime(tend, tstart));
return 0;
}