From 72b6252d3e4c69ce13f28f9e29c9833829610e8c Mon Sep 17 00:00:00 2001 From: Darnell Granberry <40174000+DarnellGranberry@users.noreply.github.com> Date: Tue, 12 Nov 2024 14:34:37 -0500 Subject: [PATCH] denoise bug fixes, array conversion --- topaz/commands/denoise.py | 2 +- topaz/denoise.py | 40 +++++++++++++++++++++++---------------- topaz/denoising/models.py | 4 ++-- 3 files changed, 27 insertions(+), 19 deletions(-) diff --git a/topaz/commands/denoise.py b/topaz/commands/denoise.py index 035a034..2e13a1c 100644 --- a/topaz/commands/denoise.py +++ b/topaz/commands/denoise.py @@ -124,7 +124,7 @@ def main(args): normalize, use_cuda) else: # stream the micrographs and denoise them - denoised = denoise_stream(args.micrographs, args.output, args.format, args.suffix, models, args.lowpass, args.pixel_cutoff, + denoised = denoise_stream(args.micrographs, args.output, args.format_, args.suffix, models, args.lowpass, args.pixel_cutoff, gaus, inv_gaus, args.deconvolve, args.deconv_patch, args.patch_size, args.patch_padding, normalize, use_cuda) return denoised diff --git a/topaz/denoise.py b/topaz/denoise.py index 74f42cc..2dccc0c 100644 --- a/topaz/denoise.py +++ b/topaz/denoise.py @@ -270,22 +270,29 @@ def train(self, train_dataset:DenoiseDataset, val_dataset:DenoiseDataset, loss_f @torch.no_grad() - def _denoise(self, input:Union[np.ndarray, torch.Tensor]): + def _denoise(self, input:Union[np.ndarray, torch.Tensor]) -> np.ndarray: '''Call stored denoising model. ''' self.model.eval() - mu, std = input.mean(), input.std() + # convert to tensor if necessary, move to device + input = torch.from_numpy(input) if type(input) == np.ndarray else input + input = input.to(self.device) # normalize, add singleton batch and input channel dims - input = torch.from_numpy( (input-mu)/std ).to(self.device).unsqueeze(0).unsqueeze(0) - pred = self.model(input) - # remove singleton dims, unnormalize - return pred.squeeze().cpu().numpy() * std + mu + mu, std = input.mean(), input.std() + input = (input - mu) / std + input = input.unsqueeze(0).unsqueeze(0) + # predict, remove extra dims + pred = self.model(input).squeeze() + # unnormalize + pred = pred * std + mu + return pred.cpu().numpy() @torch.no_grad() - def denoise_patches(self, x:Union[np.ndarray, torch.Tensor], patch_size:int, padding:int=128): + def denoise_patches(self, x:Union[np.ndarray, torch.Tensor], patch_size:int, padding:int=128) -> np.ndarray: ''' Denoise micrograph patches. ''' + x = torch.from_numpy(x) if type(x) == np.ndarray else x y = torch.zeros_like(x) for i in range(0, x.size(2), patch_size): @@ -304,14 +311,15 @@ def denoise_patches(self, x:Union[np.ndarray, torch.Tensor], patch_size:int, pad sj = j - sj y[i:i+patch_size,j:j+patch_size] = yij[si:si+patch_size,sj:sj+patch_size] + y = y.squeeze().cpu().numpy() return y @torch.no_grad() def denoise(self, x:Union[np.ndarray, torch.Tensor], patch_size=-1, padding=128): s = patch_size + padding # check the patch plus padding size - use_patch = (patch_size > 0) and (s < x.size(0) or s < x.size(1)) # must denoise in patches - result = self.denoise_patches(x, patch_size, padding=padding) if use_patch else self.denoise(x) + use_patch = (patch_size > 0) and (s < x.shape[0] or s < x.shape[1]) # must denoise in patches + result = self.denoise_patches(x, patch_size, padding=padding) if use_patch else self._denoise(x) return result @@ -359,20 +367,21 @@ def denoise(self, tomo:np.ndarray, patch_size:int=96, padding:int=48, batch_size #2D Denoising Functions -def denoise_image(mic, models:List[Denoise], lowpass=1, cutoff=0, gaus:GaussianDenoise=None, inv_gaus:InvGaussianFilter=None, deconvolve=False, - deconv_patch=1, patch_size=-1, padding=0, normalize=False, use_cuda=False): +def denoise_image(mic:np.ndarray, models:List[Denoise], lowpass=1, cutoff=0, gaus:GaussianDenoise=None, inv_gaus:InvGaussianFilter=None, deconvolve=False, + deconv_patch=1, patch_size=-1, padding=0, normalize=False, use_cuda=False) -> np.ndarray: ''' Denoise micrograph using (pre-)trained neural networks and various filters. ''' mic = lowpass(mic, lowpass) if lowpass > 1 else mic - mic = torch.from_numpy(mic) - mic = mic.cuda() if use_cuda else mic - # normalize and remove outliers mu, std = mic.mean(), mic.std() x = (mic - mu)/std if cutoff > 0: x[(x < -cutoff) | (x > cutoff)] = 0 + # convert to tensor and move to device + mic = torch.from_numpy(mic.copy()) + mic = mic.cuda() if use_cuda else mic + # apply guassian/inverse gaussian filter if gaus is not None: x = gaus.apply(x) @@ -392,8 +401,7 @@ def denoise_image(mic, models:List[Denoise], lowpass=1, cutoff=0, gaus:GaussianD # add back std. dev. and mean mic = std*mic + mu - # return back to numpy/cpu - return mic.cpu().numpy() + return mic def denoise_stack(path:str, output_path:str, models:List[Denoise], lowpass:float=1, pixel_cutoff:float=0, diff --git a/topaz/denoising/models.py b/topaz/denoising/models.py index e6c9a5e..b7aeb1c 100644 --- a/topaz/denoising/models.py +++ b/topaz/denoising/models.py @@ -8,9 +8,9 @@ import numpy as np import pkg_resources import torch -import torch.functional as F -from topaz.filters import AffineDenoise from torch import nn +import torch.nn.functional as F +from topaz.filters import AffineDenoise from torch.utils.data import DataLoader