-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.cpp
189 lines (163 loc) · 5.19 KB
/
engine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include "engine.h"
void init_params(Matrix** W1, Matrix** b1, Matrix** W2, Matrix** b2) {
*W1 = matrix_rand(800, 784);
*b1 = matrix_rand(800, 1);
*W2 = matrix_rand(10, 800);
*b2 = matrix_rand(10, 1);
}
void forward(Matrix* W1, Matrix* b1, Matrix* W2, Matrix* b2, Matrix* X, Matrix** z1, Matrix** a1, Matrix** z2, Matrix** a2) {
matrix_free(*z1);
matrix_free(*a1);
matrix_free(*z2);
matrix_free(*a2);
Matrix *w1x = matrix_dot(W1, X);
*z1 = matrix_add(w1x, b1);
*a1 = matrix_relu(*z1);
Matrix *w2a1 = matrix_dot(W2, *a1);
*z2 = matrix_add(w2a1, b2);
*a2 = matrix_softmax(*z2);
matrix_free(w1x);
matrix_free(w2a1);
}
Matrix* deriv_relu(Matrix* m) {
Matrix* c = matrix_from_shape(m);
for (int i = 0; i < m->rows * m->cols; i++) {
c->data[i] = m->data[i] > 0 ? 1 : 0;
}
return c;
}
void backprop(Matrix* z1, Matrix* a1, Matrix* z2, Matrix* a2, Matrix* W2, Matrix* X, double* Y, int N, Matrix** dW1, double* db1, Matrix** dW2, double* db2) {
matrix_free(*dW1);
matrix_free(*dW2);
int m = N;
double f = 1 / (double ) m;
Matrix* ohY = matrix_one_hot(Y, N);
Matrix* dZ2 = matrix_sub(a2, ohY);
Matrix *a1T = matrix_transpose(a1);
Matrix *dZ2a1 = matrix_dot(dZ2, a1T);
*dW2 = matrix_mulf(dZ2a1, f);
*db2 = matrix_sum(dZ2) * f;
Matrix *w2T = matrix_transpose(W2);
Matrix *w2dZ2 = matrix_dot(w2T, dZ2);
Matrix *drZ1 = deriv_relu(z1);
Matrix* dZ1 = matrix_mul(w2dZ2, drZ1);
Matrix *xT = matrix_transpose(X);
Matrix *dZ1x = matrix_dot(dZ1, xT);
*dW1 = matrix_mulf(dZ1x, f);
*db1 = matrix_sum(dZ1) * f;
matrix_free(ohY);
matrix_free(dZ2);
matrix_free(dZ1);
matrix_free(a1T);
matrix_free(dZ2a1);
matrix_free(w2T);
matrix_free(w2dZ2);
matrix_free(drZ1);
matrix_free(dZ1x);
matrix_free(xT);
}
void update_params(Matrix** W1, Matrix** b1, Matrix** W2, Matrix** b2, Matrix* dW1, double db1, Matrix* dW2, double db2, double lr) {
Matrix *dw1Lr = matrix_mulf(dW1, lr);
Matrix* _W1 = matrix_sub(*W1, dw1Lr);
Matrix* _b1 = matrix_subf(*b1, db1 * lr);
Matrix *dw2Lr = matrix_mulf(dW2, lr);
Matrix* _W2 = matrix_sub(*W2, dw2Lr);
Matrix* _b2 = matrix_subf(*b2, db2 * lr);
matrix_free(*W1);
matrix_free(*b1);
matrix_free(*W2);
matrix_free(*b2);
matrix_free(dw1Lr);
matrix_free(dw2Lr);
*W1 = _W1;
*b1 = _b1;
*W2 = _W2;
*b2 = _b2;
}
double* prediction(Matrix *a2) {
double* out = (double*) malloc(a2->cols * sizeof(double));
for (int x = 0; x < a2->cols; x++) {
double max = 0;
int idx = 0;
for (int y = 0; y < a2->rows; y++) {
if (a2->data[y * a2->cols + x] > max) {
max = a2->data[y * a2->cols + x];
idx = y;
}
}
out[x] = idx;
}
return out;
}
double accuracy(const double* predictions, const double* groundTruth, int n) {
int correct = 0;
for (int i = 0; i < n; i++) {
if (predictions[i] == groundTruth[i]) {
correct++;
}
}
return ((double) correct) / ((double) n);
}
void create_mini_batch(Matrix* X, double* Y, int N, int N_batch, Matrix** X_batch, double* Y_batch) {
matrix_free(*X_batch);
int indices[N_batch];
memset(indices, -1, N_batch * sizeof(int));
for (int i = 0; i < N_batch; i++) {
indices[i] = rand() % N;
for (int j = 0; j < i - 1; j++) {
if (indices[j] == indices[i]) {
i--;
break;
}
}
}
Matrix* c = matrix_create(X->rows, N_batch);
for (int r = 0; r < N_batch; r++) {
int col = indices[r];
for (int i = 0; i < X->rows; i++) {
c->data[i * c->cols + r] = X->data[i * X->cols + col];
}
Y_batch[r] = Y[col];
}
*X_batch = c;
}
void gradient_descent(Matrix* X, double* Y, int N, double lr, int epochs, Matrix** W1, Matrix** b1, Matrix** W2, Matrix** b2) {
Matrix* z1 = NULL;
Matrix* a1 = NULL;
Matrix* z2 = NULL;
Matrix* a2 = NULL;
Matrix* dW1 = NULL;
Matrix* dW2 = NULL;
double db1 = 0;
double db2 = 0;
init_params(W1, b1, W2, b2);
int N_batch = 100;
Matrix* X_batch = NULL;
double Y_batch[N_batch];
for (int i = 0; i < epochs; i++) {
create_mini_batch(X, Y, N, N_batch, &X_batch, Y_batch);
forward(*W1, *b1, *W2, *b2, X_batch, &z1, &a1, &z2, &a2);
backprop(z1, a1, z2, a2, *W2, X_batch, Y_batch, N_batch, &dW1, &db1, &dW2, &db2);
update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, lr);
if (i % 50 == 0 || i == epochs - 1) {
printf("Epoch %d\n", i);
printf("Accuracy: %f\n", accuracy(prediction(a2), Y_batch, N_batch));
}
}
matrix_free(X_batch);
}
void eval(Matrix* X, double* Y, int N, Matrix* W1, Matrix* b1, Matrix* W2, Matrix* b2) {
Matrix* z1 = NULL;
Matrix* a1 = NULL;
Matrix* z2 = NULL;
Matrix* a2 = NULL;
forward(W1, b1, W2, b2, X, &z1, &a1, &z2, &a2);
printf("Eval accuracy: %f\n", accuracy(prediction(a2), Y, N));
matrix_free(z1);
matrix_free(a1);
matrix_free(z2);
matrix_free(a2);
}