Please see https://github.com/rapidsai/cuml/releases/tag/v22.06.00a for the latest changes to this development branch.
- Moving more ling prims to raft (#4567) @cjnolet
- Refactor QN solver: pass parameters via a POD struct (#4511) @achirkin
- Fix single-GPU build by separating multi-GPU decomposition utils from single GPU (#4645) @dantegd
- RF: fix stream bug causing performance regressions (#4644) @venkywonka
- XFail test_hinge_loss temporarily (#4621) @lowener
- cuml now supports building non static treelite (#4598) @robertmaynard
- Fix mean_squared_error with cudf series (#4584) @daxiongshu
- Fix for nightly CI tests: Use CUDA_REL variable in gpu build.sh script (#4581) @dantegd
- Fix the TargetEncoder when transforming dataframe/series with custom index (#4578) @daxiongshu
- Removing sign from pca assertions for now. (#4559) @cjnolet
- Fix compatibility of OneHotEncoder fit (#4544) @lowener
- Fix worker streams in OLS-eig executing in an unsafe order (#4539) @achirkin
- Remove xfail from test_hinge_loss (#4504) @Nanthini10
- Fix automerge #4501 (#4502) @dantegd
- Remove classmethod of SimpleImputer (#4439) @lowener
- RF: Fix improper documentation in dask-RF (#4666) @venkywonka
- Add doctest (#4618) @lowener
- Fix document layouts in Parameters sections (#4609) @Yosshi999
- Updates to consistency of MNMG PCA/TSVD solvers (docs + code consolidation) (#4556) @cjnolet
- Add a dummy argument
deep
toTargetEncoder.get_params()
(#4601) @daxiongshu - Add Complement Naive Bayes (#4595) @lowener
- Add get_params() to TargetEncoder (#4588) @daxiongshu
- Target Encoder with variance statistics (#4483) @daxiongshu
- Interruptible execution (#4463) @achirkin
- Configurable libcuml++ per algorithm (#4296) @dantegd
- Adding some prints when hdbscan assertion fails (#4656) @cjnolet
- Temporarily disable new
ops-bot
functionality (#4652) @ajschmidt8 - Use CPMFindPackage to retrieve
cumlprims_mg
(#4649) @trxcllnt - Pin
dask
&distributed
versions (#4647) @galipremsagar - Remove RAFT MM includes (#4637) @viclafargue
- Add option to build RAFT artifacts statically into libcuml++ (#4633) @dantegd
- Upgrade
dask
&distributed
minimum version (#4632) @galipremsagar - Add
.github/ops-bot.yaml
config file (#4630) @ajschmidt8 - Small fixes for certain test failures (#4628) @vinaydes
- Templatizing FIL types to add float64 support (#4625) @canonizer
- Fitsne as default tsne method (#4597) @lowener
- Add
get_feature_names
to OneHotEncoder (#4596) @viclafargue - Fix OOM and cudaContext crash in C++ benchmarks (#4594) @RAMitchell
- Using Pyraft and automatically cloning when raft pin changes (#4593) @cjnolet
- Upgrade Treelite to 2.3.0 (#4590) @hcho3
- Sphinx warnings as errors (#4585) @RAMitchell
- Adding missing FAISS license (#4579) @cjnolet
- Add QN solver to ElasticNet and Lasso models (#4576) @achirkin
- Move remaining stats prims to raft (#4568) @cjnolet
- Moving more ling prims to raft (#4567) @cjnolet
- Adding libraft conda dependencies (#4564) @cjnolet
- Fix RF integer overflow (#4563) @RAMitchell
- Add CMake
install
rules for tests (#4551) @ajschmidt8 - Faster GLM preprocessing by fusing kernels (#4549) @achirkin
- RAFT API updates for lap, label, cluster, and spectral apis (#4548) @cjnolet
- Moving cusparse wrappers to detail API in RAFT. (#4547) @cjnolet
- Unpin max
dask
anddistributed
versions (#4546) @galipremsagar - Kernel density estimation (#4545) @RAMitchell
- Update
xgboost
version in CI (#4541) @ajschmidt8 - replaces
ccache
withsccache
(#4534) @AyodeAwe - Remove RAFT memory management (2/2) (#4526) @viclafargue
- Updating RAFT linalg headers (#4515) @divyegala
- Refactor QN solver: pass parameters via a POD struct (#4511) @achirkin
- Kernel ridge regression (#4492) @RAMitchell
- QN solvers: Use different gradient norms for different for different loss functions. (#4491) @achirkin
- RF: Variable binning and other minor refactoring (#4479) @venkywonka
- Rewrite CD solver using more BLAS (#4446) @achirkin
- Add support for sample_weights in LinearRegression (#4428) @lowener
- Nightly automated benchmark (#4414) @viclafargue
- Use FAISS with RMM (#4297) @viclafargue
- Split C++ tests into separate binaries (#4295) @dantegd
- Always upload libcuml (#4530) @raydouglass
- Fix RAFT pin to main branch (#4508) @dantegd
- Pin
dask
&distributed
(#4505) @galipremsagar - Replace use of RMM provided CUDA bindings with CUDA Python (#4499) @shwina
- Dataframe Index as columns in ColumnTransformer (#4481) @viclafargue
- Support compilation with Thrust 1.15 (#4469) @robertmaynard
- fix minor ASAN issues in UMAPAlgo::Optimize::find_params_ab() (#4405) @yitao-li
- Remove comment numerical warning (#4408) @viclafargue
- Fix docstring for npermutations in PermutationExplainer (#4402) @hcho3
- Combine and expose SVC's support vectors when fitting multi-class data (#4454) @NV-jpt
- Accept fold index for TargetEncoder (#4453) @daxiongshu
- Move NVTX range helpers to raft (#4445) @achirkin
- Fix packages upload (#4517) @Ethyling
- Testing split fused l2 knn compilation units (#4514) @cjnolet
- Prepare upload scripts for Python 3.7 removal (#4500) @Ethyling
- Renaming macros with their RAFT counterparts (#4496) @divyegala
- Allow CuPy 10 (#4487) @jakirkham
- Upgrade Treelite to 2.2.1 (#4484) @hcho3
- Unpin
dask
anddistributed
(#4482) @galipremsagar - Support categorical splits in in TreeExplainer (#4473) @hcho3
- Remove RAFT memory management (#4468) @viclafargue
- Add missing imports tests (#4452) @Ethyling
- Update CUDA 11.5 conda environment to use 22.02 pinnings. (#4450) @bdice
- Support cuML / scikit-learn RF classifiers in TreeExplainer (#4447) @hcho3
- Remove
IncludeCategories
from.clang-format
(#4438) @codereport - Simplify perplexity normalization in t-SNE (#4425) @zbjornson
- Unify dense and sparse tests (#4417) @levsnv
- Update ucx-py version on release using rvc (#4411) @Ethyling
- Universal Treelite tree walk function for FIL (#4407) @levsnv
- Update to UCX-Py 0.24 (#4396) @pentschev
- Using sparse public API functions from RAFT (#4389) @cjnolet
- Add a warning to prefer LinearSVM over SVM(kernel='linear') (#4382) @achirkin
- Hiding cusparse deprecation warnings (#4373) @cjnolet
- Unify dense and sparse import in FIL (#4328) @levsnv
- Integrating RAFT handle updates (#4313) @divyegala
- Use RAFT template instantations for distances (#4302) @cjnolet
- RF: code re-organization to enhance build parallelism (#4299) @venkywonka
- Add option to build faiss and treelite shared libs, inherit common dependencies from raft (#4256) @trxcllnt
- Fix indexing of PCA to use safer types (#4255) @lowener
- RF: Add Gamma and Inverse Gaussian loss criteria (#4216) @venkywonka
- update RF docs (#4138) @venkywonka
- Update conda recipe to have explicit libcusolver (#4392) @dantegd
- Restore FIL convention of inlining code (#4366) @levsnv
- Fix SVR intercept AttributeError (#4358) @lowener
- Fix
is_stable_build
logic for CI scripts (#4350) @ajschmidt8 - Temporarily disable rmm devicebuffer in array.py (#4333) @dantegd
- Fix categorical test in python (#4326) @levsnv
- Revert "Merge pull request #4319 from AyodeAwe/branch-21.12" (#4325) @ajschmidt8
- Preserve indexing in methods when applied to DataFrame and Series objects (#4317) @dantegd
- Fix potential CUDA context poison when negative (invalid) categories provided to FIL model (#4314) @levsnv
- Using sparse expanded distances where possible (#4310) @cjnolet
- Fix for
mean_squared_error
(#4287) @viclafargue - Fix for Categorical Naive Bayes sparse handling (#4277) @lowener
- Throw an explicit excpetion if the input array is empty in DBSCAN.fit #4273 (#4275) @viktorkovesd
- Fix KernelExplainer returning TypeError for certain input (#4272) @Nanthini10
- Remove most warnings from pytest suite (#4196) @dantegd
- Add experimental GPUTreeSHAP to API doc (#4398) @hcho3
- Fix GLM typo on device/host pointer (#4320) @lowener
- update RF docs (#4138) @venkywonka
- Add GPUTreeSHAP to cuML explainer module (experimental) (#4351) @hcho3
- Enable training single GPU cuML models using Dask DataFrames and Series (#4300) @ChrisJar
- LinearSVM using QN solvers (#4268) @achirkin
- Add support for exogenous variables to ARIMA (#4221) @Nyrio
- Use opt-in shared memory carveout for FIL (#3759) @levsnv
- Symbolic Regression/Classification C/C++ (#3638) @vimarsh6739
- Fix Changelog Merge Conflicts for
branch-21.12
(#4393) @ajschmidt8 - Pin max
dask
anddistributed
to2012.11.2
(#4390) @galipremsagar - Fix forward merge #4349 (#4374) @dantegd
- Upgrade
clang
to11.1.0
(#4372) @galipremsagar - Update clang-format version in docs; allow unanchored version string (#4365) @zbjornson
- Add CUDA 11.5 developer environment (#4364) @dantegd
- Fix aliasing violation in t-SNE (#4363) @zbjornson
- Promote FITSNE from experimental (#4361) @lowener
- Fix unnecessary f32/f64 conversions in t-SNE KL calc (#4331) @zbjornson
- Update rapids-cmake version (#4330) @dantegd
- rapids-cmake version update to 21.12 (#4327) @dantegd
- Use compute-sanitizer instead of cuda-memcheck (#4324) @teju85
- Ability to pass fp64 type to cuml benchmarks (#4323) @teju85
- Split treelite fil import from
forest
object definition (#4306) @levsnv - update xgboost version (#4301) @msadang
- Accounting for RAFT updates to matrix, stats, and random implementations in detail (#4294) @divyegala
- Update cudf matrix calls for to_numpy and to_cupy (#4293) @dantegd
- Update
conda
recipes for Enhanced Compatibility effort (#4288) @ajschmidt8 - Increase parallelism from 4 to 8 jobs in CI (#4286) @dantegd
- RAFT distance prims public API update (#4280) @cjnolet
- Update to UCX-Py 0.23 (#4274) @pentschev
- In FIL, clip blocks_per_sm to one wave instead of asserting (#4271) @levsnv
- Update of "Gracefully accept 'n_jobs', a common sklearn parameter, in NearestNeighbors Estimator" (#4267) @NV-jpt
- Improve numerical stability of the Kalman filter for ARIMA (#4259) @Nyrio
- Fix indexing of PCA to use safer types (#4255) @lowener
- Change calculation of ARIMA confidence intervals (#4248) @Nyrio
- Unpin
dask
&distributed
in CI (#4235) @galipremsagar - RF: Add Gamma and Inverse Gaussian loss criteria (#4216) @venkywonka
- Exposing KL divergence in TSNE (#4208) @viclafargue
- Unify template parameter dispatch for FIL inference and shared memory footprint estimation (#4013) @levsnv
- RF: python api behaviour refactor (#4207) @venkywonka
- Implement vector leaf for random forest (#4191) @RAMitchell
- Random forest refactoring (#4166) @RAMitchell
- RF: Add Poisson deviance impurity criterion (#4156) @venkywonka
- avoid paramsSolver::{n_rows,n_cols} shadowing their base class counterparts (#4130) @yitao-li
- Apply modifications to account for RAFT changes (#4077) @viclafargue
- Update scikit-learn version in conda dev envs to 0.24 (#4241) @dantegd
- Using pinned host memory for Random Forest and DBSCAN (#4215) @divyegala
- Make sure we keep the rapids-cmake and cuml cal version in sync (#4213) @robertmaynard
- Add thrust_create_target to install export in CMakeLists (#4209) @dantegd
- Change the error type to match sklearn. (#4198) @achirkin
- Fixing remaining hdbscan bug (#4179) @cjnolet
- Fix for cuDF changes to cudf.core (#4168) @dantegd
- Fixing UMAP reproducibility pytest failures in 11.4 by using random init for now (#4152) @cjnolet
- avoid paramsSolver::{n_rows,n_cols} shadowing their base class counterparts (#4130) @yitao-li
- Use the new RAPIDS.cmake to fetch rapids-cmake (#4102) @robertmaynard
- Expose train_test_split in API doc (#4234) @hcho3
- Adding docs for
.get_feature_names()
insideTfidfVectorizer
(#4226) @mayankanand007 - Removing experimental flag from hdbscan description in docs (#4211) @cjnolet
- updated build instructions (#4200) @shaneding
- Forward-merge branch-21.08 to branch-21.10 (#4171) @jakirkham
- Experimental option to build libcuml++ only with FIL (#4225) @dantegd
- FIL to import categorical models from treelite (#4173) @levsnv
- Add hamming, jensen-shannon, kl-divergence, correlation and russellrao distance metrics (#4155) @mdoijade
- Add Categorical Naive Bayes (#4150) @lowener
- FIL to infer categorical forests and generate them in C++ tests (#4092) @levsnv
- Add Gaussian Naive Bayes (#4079) @lowener
- ARIMA - Add support for missing observations and padding (#4058) @Nyrio
- Pin max
dask
anddistributed
versions to 2021.09.1 (#4229) @galipremsagar - Fea/umap refine (#4228) @AjayThorve
- Upgrade Treelite to 2.1.0 (#4220) @hcho3
- Add option to clone RAFT even if it is in the environment (#4217) @dantegd
- RF: python api behaviour refactor (#4207) @venkywonka
- Pytest updates for Scikit-learn 0.24 (#4205) @dantegd
- Faster glm ols-via-eigendecomposition algorithm (#4201) @achirkin
- Implement vector leaf for random forest (#4191) @RAMitchell
- Refactor kmeans sampling code (#4190) @Nanthini10
- Gracefully accept 'n_jobs', a common sklearn parameter, in NearestNeighbors Estimator (#4178) @NV-jpt
- Update with rapids cmake new features (#4175) @robertmaynard
- Update to UCX-Py 0.22 (#4174) @pentschev
- Random forest refactoring (#4166) @RAMitchell
- Fix log level for dask tree_reduce (#4163) @lowener
- Add CUDA 11.4 development environment (#4160) @dantegd
- RF: Add Poisson deviance impurity criterion (#4156) @venkywonka
- Split FIL infer_k into phases to speed up compilation (when a patch is applied) (#4148) @levsnv
- RF node queue rewrite (#4125) @RAMitchell
- Remove max version pin for
dask
&distributed
on development branch (#4118) @galipremsagar - Correct name of a cmake function in get_spdlog.cmake (#4106) @robertmaynard
- Apply modifications to account for RAFT changes (#4077) @viclafargue
- Warnings are errors (#4075) @harrism
- ENH Replace gpuci_conda_retry with gpuci_mamba_retry (#4065) @dillon-cullinan
- Changes to NearestNeighbors to call 2d random ball cover (#4003) @cjnolet
- support space in workspace (#3752) @jolorunyomi
- Remove deprecated target_weights in UMAP (#4081) @lowener
- Upgrade Treelite to 2.0.0 (#4072) @hcho3
- RF/DT cleanup (#4005) @venkywonka
- RF: memset and batch size optimization for computing splits (#4001) @venkywonka
- Remove old RF backend (#3868) @RAMitchell
- Enable warp-per-tree inference in FIL for regression and binary classification (#3760) @levsnv
- Disabling umap reproducibility tests for cuda 11.4 (#4128) @cjnolet
- Fix for crash in RF when
max_leaves
parameter is specified (#4126) @vinaydes - Running umap mnmg test twice (#4112) @cjnolet
- Minimal fix for
SparseRandomProjection
(#4100) @viclafargue - Creating copy of
components
in PCA transform and inverse transform (#4099) @divyegala - Fix SVM model parameter handling in case n_support=0 (#4097) @tfeher
- Fix set_params for linear models (#4096) @lowener
- Fix train test split pytest comparison (#4062) @dantegd
- Fix fit_transform on KMeans (#4055) @lowener
- Fixing -1 key access in 1nn reduce op in HDBSCAN (#4052) @divyegala
- Disable installing gbench to avoid container permission issues (#4049) @dantegd
- Fix double fit crash in preprocessing models (#4040) @viclafargue
- Always add
faiss
library alias if it's missing (#4028) @trxcllnt - Fixing intermittent HBDSCAN pytest failure in CI (#4025) @divyegala
- HDBSCAN bug on A100 (#4024) @divyegala
- Add treelite include paths to treelite targets (#4023) @trxcllnt
- Add Treelite_BINARY_DIR include to
cuml++
build interface include paths (#4018) @trxcllnt - Small ARIMA-related bug fixes in Hessenberg reduction and make_arima (#4017) @Nyrio
- Update setup.py (#4015) @ajschmidt8
- Update
treelite
version inget_treelite.cmake
(#4014) @ajschmidt8 - Fix build with latest RAFT branch-21.08 (#4012) @trxcllnt
- Skipping hdbscan pytests when gpu is a100 (#4007) @cjnolet
- Using 64-bit array lengths to increase scale of pca & tsvd (#3983) @cjnolet
- Fix MNMG test in Dask RF (#3964) @hcho3
- Use nested include in destination of install headers to avoid docker permission issues (#3962) @dantegd
- Fix automerge #3939 (#3952) @dantegd
- Update UCX-Py version to 0.21 (#3950) @pentschev
- Fix kernel and line info in cmake (#3941) @dantegd
- Fix for multi GPU PCA compute failing bug after transform and added error handling when n_components is not passed (#3912) @akaanirban
- Tolerate QN linesearch failures when it's harmless (#3791) @achirkin
- Improve docstrings for silhouette score metrics. (#4026) @bdice
- Update CHANGELOG.md link (#3956) @Salonijain27
- Update documentation build examples to be generator agnostic (#3909) @robertmaynard
- Improve FIL code readability and documentation (#3056) @levsnv
- Add Multinomial and Bernoulli Naive Bayes variants (#4053) @lowener
- Add weighted K-Means sampling for SHAP (#4051) @Nanthini10
- Use chebyshev, canberra, hellinger and minkowski distance metrics (#3990) @mdoijade
- Implement vector leaf prediction for fil. (#3917) @RAMitchell
- change TargetEncoder's smooth argument from ratio to count (#3876) @daxiongshu
- Enable warp-per-tree inference in FIL for regression and binary classification (#3760) @levsnv
- Remove clang/clang-tools from conda recipe (#4109) @dantegd
- Pin dask version (#4108) @galipremsagar
- ANN warnings/tests updates (#4101) @viclafargue
- Removing local memory operations from computeSplitKernel and other optimizations (#4083) @vinaydes
- Fix libfaiss dependency to not expressly depend on conda-forge (#4082) @Ethyling
- Remove deprecated target_weights in UMAP (#4081) @lowener
- Upgrade Treelite to 2.0.0 (#4072) @hcho3
- Optimize dtype conversion for FIL (#4070) @dantegd
- Adding quick notes to HDBSCAN public API docs as to why discrepancies may occur between cpu and gpu impls. (#4061) @cjnolet
- Update
conda
environment name for CI (#4039) @ajschmidt8 - Rewrite random forest gtests (#4038) @RAMitchell
- Updating Clang Version to 11.0.0 (#4029) @codereport
- Raise ARIMA parameter limits from 4 to 8 (#4022) @Nyrio
- Testing extract clusters in HDBSCAN (#4009) @divyegala
- ARIMA - Kalman loop rewrite: single megakernel instead of host loop (#4006) @Nyrio
- RF/DT cleanup (#4005) @venkywonka
- Exposing condensed hierarchy through cython for easier unit-level testing (#4004) @cjnolet
- Use the 21.08 branch of rapids-cmake as rmm requires it (#4002) @robertmaynard
- RF: memset and batch size optimization for computing splits (#4001) @venkywonka
- Reducing cluster size to number of selected clusters. Returning stability scores (#3987) @cjnolet
- HDBSCAN: Lazy-loading (and caching) condensed & single-linkage tree objects (#3986) @cjnolet
- Fix
21.08
forward-merge conflicts (#3982) @ajschmidt8 - Update Dask/Distributed version (#3978) @pentschev
- Use clang-tools on x86 only (#3969) @jakirkham
- Promote
trustworthiness_score
to public header, add missing includes, update dependencies (#3968) @trxcllnt - Moving FAISS ANN wrapper to raft (#3963) @cjnolet
- Add MG weighted k-means (#3959) @lowener
- Remove unused code in UMAP. (#3931) @trivialfis
- Fix automerge #3900 and correct package versions in meta packages (#3918) @dantegd
- Adaptive stress tests when GPU memory capacity is insufficient (#3916) @lowener
- Fix merge conflicts (#3892) @ajschmidt8
- Remove old RF backend (#3868) @RAMitchell
- Refactor to extract random forest objectives (#3854) @RAMitchell
- Remove Base.enable_rmm_pool method as it is no longer needed (#3875) @teju85
- RF: Make experimental-backend default for regression tasks and deprecate old-backend. (#3872) @venkywonka
- Deterministic UMAP with floating point rounding. (#3848) @trivialfis
- Fix RF regression performance (#3845) @RAMitchell
- Add feature to print forest shape in FIL upon importing (#3763) @levsnv
- Remove 'seed' and 'output_type' deprecated features (#3739) @lowener
- Disable UMAP deterministic test on CTK11.2 (#3942) @trivialfis
- Revert #3869 (#3933) @hcho3
- RF: fix the bug in
pdf_to_cdf
device function that causes hang whenn_bins > TPB && n_bins % TPB != 0
(#3921) @venkywonka - Fix number of permutations in pytest and getting handle for cuml models (#3920) @dantegd
- Fix typo in umap
target_weight
parameter (#3914) @lowener - correct compliation of cuml c library (#3908) @robertmaynard
- Correct install path for include folder to avoid double nesting (#3901) @dantegd
- Add type check for y in train_test_split (#3886) @Nanthini10
- Fix for MNMG test_rf_classification_dask_fil_predict_proba (#3831) @lowener
- Fix MNMG test test_rf_regression_dask_fil (#3830) @hcho3
- AgglomerativeClustering support single cluster and ignore only zero distances from self-loops (#3824) @cjnolet
- Small doc fixes for 21.06 release (#3936) @dantegd
- Document ability to export cuML RF to predict on other machines (#3890) @hcho3
- Deterministic UMAP with floating point rounding. (#3848) @trivialfis
- HDBSCAN (#3821) @cjnolet
- Add feature to print forest shape in FIL upon importing (#3763) @levsnv
- Pin dask ot 2021.5.1 for 21.06 release (#3937) @dantegd
- Upgrade xgboost to 1.4.2 (#3925) @dantegd
- Use UCX-Py 0.20 (#3911) @jakirkham
- Upgrade NCCL to 2.9.9 (#3902) @dantegd
- Update conda developer environments (#3898) @viclafargue
- ARIMA: pre-allocation of temporary memory to reduce latencies (#3895) @Nyrio
- Condense TSNE parameters into a struct (#3884) @lowener
- Update
CHANGELOG.md
links for calver (#3883) @ajschmidt8 - Make sure
__init__
is called in graph callback. (#3881) @trivialfis - Update docs build script (#3877) @ajschmidt8
- Remove Base.enable_rmm_pool method as it is no longer needed (#3875) @teju85
- RF: Make experimental-backend default for regression tasks and deprecate old-backend. (#3872) @venkywonka
- Enable probability output from RF binary classifier (alternative implementaton) (#3869) @hcho3
- CI test speed improvement (#3851) @lowener
- Fix RF regression performance (#3845) @RAMitchell
- Update to CMake 3.20 features,
rapids-cmake
andCPM
(#3844) @dantegd - Support sparse input features in QN solvers and Logistic Regression (#3827) @achirkin
- Trustworthiness score improvements (#3826) @viclafargue
- Performance optimization of RF split kernels by removing empty cycles (#3818) @vinaydes
- Correct deprecate positional args decorator for CalVer (#3784) @lowener
- ColumnTransformer & FunctionTransformer (#3745) @viclafargue
- Remove 'seed' and 'output_type' deprecated features (#3739) @lowener
- Use the new RF backend by default for classification (#3686) @hcho3
- Deprecating quantile-per-tree and removing three previously deprecated Random Forest parameters (#3667) @vinaydes
- Update predict() / predict_proba() of RF to match sklearn (#3609) @hcho3
- Upgrade FAISS to 1.7.x (#3509) @viclafargue
- cuML's estimator Base class for preprocessing models (#3270) @viclafargue
- Fix brute force KNN distance metric issue (#3755) @viclafargue
- Fix min_max_axis (#3735) @viclafargue
- Fix NaN errors observed with ARIMA in CUDA 11.2 builds (#3730) @Nyrio
- Fix random state generator (#3716) @viclafargue
- Fixes the out of memory access issue for computeSplit kernels (#3715) @vinaydes
- Fixing umap gtest failure under cuda 11.2. (#3696) @cjnolet
- Fix irreproducibility issue in RF classification (#3693) @vinaydes
- BUG fix BatchedLevelAlgo DtClsTest & DtRegTest failing tests (#3690) @venkywonka
- Restore the functionality of RF score() (#3685) @hcho3
- Use main build.sh to build docs in docs CI (#3681) @dantegd
- Revert "Update conda recipes pinning of repo dependencies" (#3680) @raydouglass
- Skip tests that fail on CUDA 11.2 (#3679) @dantegd
- Dask KNN Cl&Re 1D labels (#3668) @viclafargue
- Update conda recipes pinning of repo dependencies (#3666) @mike-wendt
- OOB access in GLM SoftMax (#3642) @divyegala
- SilhouetteScore C++ tests seed (#3640) @divyegala
- SimpleImputer fix (#3624) @viclafargue
- Silhouette Score
make_monotonic
for non-monotonic label set (#3619) @divyegala - Fixing support for empty rows in sparse Jaccard / Cosine (#3612) @cjnolet
- Fix train_test_split with stratify option (#3611) @Nanthini10
- Update predict() / predict_proba() of RF to match sklearn (#3609) @hcho3
- Change dask and distributed branch to main (#3593) @dantegd
- Fixes memory allocation for experimental backend and improves quantile computations (#3586) @vinaydes
- Add ucx-proc package back that got lost during an auto merge conflict (#3550) @dantegd
- Fix failing Hellinger gtest (#3549) @cjnolet
- Directly invoke make for non-CMake docs target (#3534) @wphicks
- Fix Codecov.io Coverage Upload for Branch Builds (#3524) @mdemoret-nv
- Ensure global_output_type is thread-safe (#3497) @wphicks
- List as input for SimpleImputer (#3489) @viclafargue
- Add sparse docstring comments (#3712) @JohnZed
- FIL and Dask demo (#3698) @miroenev
- Deprecating quantile-per-tree and removing three previously deprecated Random Forest parameters (#3667) @vinaydes
- Fixing Indentation for Docstring Generators (#3650) @mdemoret-nv
- Update doc to indicate ExtraTree support (#3635) @hcho3
- Update doc, now that FIL supports multi-class classification (#3634) @hcho3
- Document model_type='xgboost_json' in FIL (#3633) @hcho3
- Including log loss metric to the documentation website (#3617) @lowener
- Update the build doc regarding the use of GCC 7.5 (#3605) @hcho3
- Update One-Hot Encoder doc (#3600) @lowener
- Fix documentation of KMeans (#3595) @lowener
- Reduce the size of the cuml libraries (#3702) @robertmaynard
- Use ninja as default CMake generator (#3664) @wphicks
- Single-Linkage Hierarchical Clustering Python Wrapper (#3631) @cjnolet
- Support for precomputed distance matrix in DBSCAN (#3585) @Nyrio
- Adding haversine to brute force knn (#3579) @cjnolet
- Support for sample_weight parameter in LogisticRegression (#3572) @viclafargue
- Provide "--ccache" flag for build.sh (#3566) @wphicks
- Eliminate unnecessary includes discovered by cppclean (#3564) @wphicks
- Single-linkage Hierarchical Clustering C++ (#3545) @cjnolet
- Expose sparse distances via semiring to Python API (#3516) @lowener
- Use cmake --build in build.sh to facilitate switching build tools (#3487) @wphicks
- Add cython hinge_loss (#3409) @Nanthini10
- Adding CodeCov Info for Dask Tests (#3338) @mdemoret-nv
- Add predict_proba() to XGBoost-style models in FIL C++ (#2894) @levsnv
- Updating docs, readme, and umap param tests for 0.19 (#3731) @cjnolet
- Locking RAFT hash for 0.19 (#3721) @cjnolet
- Upgrade to Treelite 1.1.0 (#3708) @hcho3
- Update to XGBoost 1.4.0rc1 (#3699) @hcho3
- Use the new RF backend by default for classification (#3686) @hcho3
- Update LogisticRegression documentation (#3677) @viclafargue
- Preprocessing out of experimental (#3676) @viclafargue
- ENH Decision Tree new backend
computeSplit*Kernel
histogram calculation optimization (#3674) @venkywonka - Remove
check_cupy8
(#3669) @viclafargue - Use custom conda build directory for ccache integration (#3658) @dillon-cullinan
- Disable three flaky tests (#3657) @hcho3
- CUDA 11.2 developer environment (#3648) @dantegd
- Store data frequencies in tree nodes of RF (#3647) @hcho3
- Row major Gram matrices (#3639) @tfeher
- Converting all Estimator Constructors to Keyword Arguments (#3636) @mdemoret-nv
- Adding make_pipeline + test score with pipeline (#3632) @viclafargue
- ENH Decision Tree new backend
computeSplitClassificationKernel
histogram calculation and occupancy optimization (#3616) @venkywonka - Revert "ENH Fix stale GHA and prevent duplicates " (#3614) @mike-wendt
- ENH Fix stale GHA and prevent duplicates (#3613) @mike-wendt
- KNN from RAFT (#3603) @viclafargue
- Update Changelog Link (#3601) @ajschmidt8
- Move SHAP explainers out of experimental (#3596) @dantegd
- Fixing compatibility issue with CUDA array interface (#3594) @lowener
- Remove cutlass usage in row major input for euclidean exp/unexp, cosine and L1 distance matrix (#3589) @mdoijade
- Test FIL probabilities with absolute error thresholds in python (#3582) @levsnv
- Removing sparse prims and fused l2 nn prim from cuml (#3578) @cjnolet
- Prepare Changelog for Automation (#3570) @ajschmidt8
- Print debug message if SVM convergence is poor (#3562) @tfeher
- Fix merge conflicts in 3552 (#3557) @ajschmidt8
- Additional distance metrics for ANN (#3533) @viclafargue
- Improve warning message when QN solver reaches max_iter (#3515) @tfeher
- Fix merge conflicts in 3502 (#3513) @ajschmidt8
- Upgrade FAISS to 1.7.x (#3509) @viclafargue
- ENH Pass ccache variables to conda recipe & use Ninja in CI (#3508) @Ethyling
- Fix forward-merger conflicts in #3502 (#3506) @dantegd
- Sklearn meta-estimators into namespace (#3493) @viclafargue
- Add flexibility to copyright checker (#3466) @lowener
- Update sparse KNN to use rmm device buffer (#3460) @lowener
- Fix forward-merger conflicts in #3444 (#3455) @ajschmidt8
- Replace ML::MetricType with raft::distance::DistanceType (#3389) @lowener
- RF param initialization cython and C++ layer cleanup (#3358) @venkywonka
- MNMG RF broadcast feature (#3349) @viclafargue
- cuML's estimator Base class for preprocessing models (#3270) @viclafargue
- Make
_get_tags
a class/static method (#3257) @dantegd - NVTX Markers for RF and RF-backend (#3014) @venkywonka
- cuml.experimental SHAP improvements (#3433) @dantegd
- Enable feature sampling for the experimental backend of Random Forest (#3364) @vinaydes
- re-enable cuML's copyright checker script (#3363) @teju85
- Batched Silhouette Score (#3362) @divyegala
- Update failing MNMG tests (#3348) @viclafargue
- Rename print_summary() of Dask RF to get_summary_text(); it now returns string to the client (#3341) @hcho3
- Rename dump_as_json() -> get_json(); expose it from Dask RF (#3340) @hcho3
- MNMG KNN consolidation (#3307) @viclafargue
- Return confusion matrix as int unless float weights are used (#3275) @lowener
- Approximate Nearest Neighbors (#2780) @viclafargue
- HOTFIX Add ucx-proc package back that got lost during an auto merge conflict (#3551) @dantegd
- Non project-flash CI ml test 18.04 issue debugging and bugfixing (#3495) @dantegd
- Temporarily xfail KBinsDiscretizer uniform tests (#3494) @wphicks
- Fix illegal memory accesses when NITEMS > 1, and nrows % NITEMS != 0. (#3480) @canonizer
- Update call to dask client persist (#3474) @dantegd
- Adding warning for IVFPQ (#3472) @viclafargue
- Fix failing sparse NN test in CI by allowing small number of index discrepancies (#3454) @cjnolet
- Exempting thirdparty code from copyright checks (#3453) @lowener
- Relaxing Batched SilhouetteScore Test Constraint (#3452) @divyegala
- Mark kbinsdiscretizer quantile tests as xfail (#3450) @wphicks
- Fixing documentation on SimpleImputer (#3447) @lowener
- Skipping IVFPQ (#3429) @viclafargue
- Adding tol to dask test_kmeans (#3426) @lowener
- Fix memory bug for SVM with large n_rows (#3420) @tfeher
- Allow linear regression for with CUDA >=11.0 (#3417) @wphicks
- Fix vectorizer tests by restoring sort behavior in groupby (#3416) @JohnZed
- Ensure make_classification respects output type (#3415) @wphicks
- Clean Up
#include
Dependencies (#3402) @mdemoret-nv - Fix Nearest Neighbor Stress Test (#3401) @lowener
- Fix array_equal in tests (#3400) @viclafargue
- Improving Copyright Check When Not Running in CI (#3398) @mdemoret-nv
- Also xfail zlib errors when downloading newsgroups data (#3393) @JohnZed
- Fix for ANN memory release bug (#3391) @viclafargue
- XFail Holt Winters test where statsmodels has known issues with gcc 9.3.0 (#3385) @JohnZed
- FIX Update cupy to >= 7.8 and remove unused build.sh script (#3378) @dantegd
- re-enable cuML's copyright checker script (#3363) @teju85
- Update failing MNMG tests (#3348) @viclafargue
- Rename print_summary() of Dask RF to get_summary_text(); it now returns string to the client (#3341) @hcho3
- Fixing
make_blobs
to Respect the Global Output Type (#3339) @mdemoret-nv - Fix permutation explainer (#3332) @RAMitchell
- k-means bug fix in debug build (#3321) @akkamesh
- Fix for default arguments of PCA (#3320) @lowener
- Provide workaround for cupy.percentile bug (#3315) @wphicks
- Fix SVR unit test parameter (#3294) @tfeher
- Add xfail on fetching 20newsgroup dataset (test_naive_bayes) (#3291) @lowener
- Remove unused keyword in PorterStemmer code (#3289) @wphicks
- Remove static specifier in DecisionTree unit test for C++14 compliance (#3281) @wphicks
- Correct pure virtual declaration in manifold_inputs_t (#3279) @wphicks
- Correct import path in docs for experimental preprocessing features (#3488) @wphicks
- Minor doc updates for 0.18 (#3475) @JohnZed
- Improve Python Docs with Default Role (#3445) @mdemoret-nv
- Fixing Python Documentation Errors and Warnings (#3428) @mdemoret-nv
- Remove outdated references to changelog in CONTRIBUTING.md (#3328) @wphicks
- Adding highlighting to bibtex in readme (#3296) @cjnolet
- Improve runtime performance of RF to Treelite conversion (#3410) @wphicks
- Parallelize Treelite to FIL conversion over trees (#3396) @wphicks
- Parallelize RF to Treelite conversion over trees (#3395) @wphicks
- Allow saving Dask RandomForest models immediately after training (fixes #3331) (#3388) @jameslamb
- genetic programming initial structures (#3387) @teju85
- MNMG DBSCAN (#3382) @Nyrio
- FIL to use L1 cache when input columns don't fit into shared memory (#3370) @levsnv
- Enable feature sampling for the experimental backend of Random Forest (#3364) @vinaydes
- Batched Silhouette Score (#3362) @divyegala
- Rename dump_as_json() -> get_json(); expose it from Dask RF (#3340) @hcho3
- Exposing model_selection in a similar way to scikit-learn (#3329) @ptartan21
- Promote IncrementalPCA from experimental in 0.18 release (#3327) @lowener
- Create labeler.yml (#3324) @jolorunyomi
- Add slow high-precision mode to KNN (#3304) @wphicks
- Sparse TSNE (#3293) @divyegala
- Sparse Generalized SPMV (semiring) Primitive (#3146) @cjnolet
- Multiclass meta estimator wrappers and multiclass SVC (#3092) @tfeher
- Approximate Nearest Neighbors (#2780) @viclafargue
- Add KNN parameter to t-SNE (#2592) @aleksficek
- Update stale GHA with exemptions & new labels (#3507) @mike-wendt
- Add GHA to mark issues/prs as stale/rotten (#3500) @Ethyling
- Fix naive bayes inputs (#3448) @cjnolet
- Prepare Changelog for Automation (#3442) @ajschmidt8
- cuml.experimental SHAP improvements (#3433) @dantegd
- Speed up knn tests (#3411) @JohnZed
- Replacing sklearn functions with cuml in RF MNMG notebook (#3408) @lowener
- Auto-label PRs based on their content (#3407) @jolorunyomi
- Use stable 1.0.0 version of Treelite (#3394) @hcho3
- API update to match RAFT PR #120 (#3386) @drobison00
- Update linear models to use RMM memory allocation (#3365) @lowener
- Updating dense pairwise distance enum names (#3352) @cjnolet
- Upgrade Treelite module (#3316) @hcho3
- Removed FIL node types with
_t
suffix (#3314) @canonizer - MNMG KNN consolidation (#3307) @viclafargue
- Updating PyTests to Stay Below 4 Gb Limit (#3306) @mdemoret-nv
- Refactoring: move internal FIL interface to a separate file (#3292) @canonizer
- Return confusion matrix as int unless float weights are used (#3275) @lowener
- 018 add unfitted error pca & tests on IPCA (#3272) @lowener
- Linear models predict function consolidation (#3256) @dantegd
- Preparing sparse primitives for movement to RAFT (#3157) @cjnolet
- PR #3164: Expose silhouette score in Python
- PR #3160: Least Angle Regression (experimental)
- PR #2659: Add initial max inner product sparse knn
- PR #3092: Multiclass meta estimator wrappers and multiclass SVC
- PR #2836: Refactor UMAP to accept sparse inputs
- PR #2894: predict_proba in FIL C++ for XGBoost-style multi-class models
- PR #3126: Experimental versions of GPU accelerated Kernel and Permutation SHAP
- PR #3077: Improve runtime for test_kmeans
- PR #3070: Speed up dask/test_datasets tests
- PR #3075: Speed up test_linear_model tests
- PR #3078: Speed up test_incremental_pca tests
- PR #2902:
matrix/matrix.cuh
in RAFT namespacing - PR #2903: Moving linalg's gemm, gemv, transpose to RAFT namespaces
- PR #2905:
stats
primsmean_center
,sum
to RAFT namespaces - PR #2904: Moving
linalg
basic math ops to RAFT namespaces - PR #2956: Follow cuML array conventions in ARIMA and remove redundancy
- PR #3000: Pin cmake policies to cmake 3.17 version, bump project version to 0.17
- PR #3083: Improving test_make_blobs testing time
- PR #3223: Increase default SVM kernel cache to 2000 MiB
- PR #2906: Moving
linalg
decomp to RAFT namespaces - PR #2988: FIL: use tree-per-class reduction for GROVE_PER_CLASS_FEW_CLASSES
- PR #2996: Removing the max_depth restriction for switching to the batched backend
- PR #3004: Remove Single Process Multi GPU (SPMG) code
- PR #3032: FIL: Add optimization parameter
blocks_per_sm
that will help all but tiniest models - PR #3044: Move leftover
linalg
andstats
to RAFT namespaces - PR #3067: Deleting prims moved to RAFT and updating header paths
- PR #3074: Reducing dask coordinate descent test runtime
- PR #3096: Avoid memory transfers in CSR WeakCC for DBSCAN
- PR #3088: More readable and robust FIL C++ test management
- PR #3052: Speeding up MNMG KNN Cl&Re testing
- PR #3115: Speeding up MNMG UMAP testing
- PR #3112: Speed test_array
- PR #3111: Adding Cython to Code Coverage
- PR #3129: Update notebooks README
- PR #3002: Update flake8 Config To With Per File Settings
- PR #3135: Add QuasiNewton tests
- PR #3040: Improved Array Conversion with CumlArrayDescriptor and Decorators
- PR #3134: Improving the Deprecation Message Formatting in Documentation
- PR #3154: Adding estimator pickling demo notebooks (and docs)
- PR #3151: MNMG Logistic Regression via dask-glm
- PR #3113: Add tags and prefered memory order tags to estimators
- PR #3137: Reorganize Pytest Config and Add Quick Run Option
- PR #3144: Adding Ability to Set Arbitrary Cmake Flags in ./build.sh
- PR #3155: Eliminate unnecessary warnings from random projection test
- PR #3176: Add probabilistic SVM tests with various input array types
- PR #3180: FIL:
blocks_per_sm
support in Python - PR #3186: Add gain to RF JSON dump
- PR #3219: Update CI to use XGBoost 1.3.0 RCs
- PR #3221: Update contributing doc for label support
- PR #3177: Make Multinomial Naive Bayes inherit from
ClassifierMixin
and use it for score - PR #3241: Updating RAFT to latest
- PR #3240: Minor doc updates
- PR #3275: Return confusion matrix as int unless float weights are used
- PR #3218: Specify dependency branches in conda dev environment to avoid pip resolver issue
- PR #3196: Disable ascending=false path for sortColumnsPerRow
- PR #3051: MNMG KNN Cl&Re fix + multiple improvements
- PR #3179: Remove unused metrics.cu file
- PR #3069: Prevent conversion of DataFrames to Series in preprocessing
- PR #3065: Refactoring prims metrics function names from camelcase to underscore format
- PR #3033: Splitting ml metrics to individual files
- PR #3072: Fusing metrics and score directories in src_prims
- PR #3037: Avoid logging deadlock in multi-threaded C code
- PR #2983: Fix seeding of KISS99 RNG
- PR #3011: Fix unused initialize_embeddings parameter in Barnes-Hut t-SNE
- PR #3008: Check number of columns in check_array validator
- PR #3012: Increasing learning rate for SGD log loss and invscaling pytests
- PR #2950: Fix includes in UMAP
- PR #3194: Fix cuDF to cuPy conversion (missing value)
- PR #3021: Fix a hang in cuML RF experimental backend
- PR #3039: Update RF and decision tree parameter initializations in benchmark codes
- PR #3060: Speed up test suite
test_fil
- PR #3061: Handle C++ exception thrown from FIL predict
- PR #3073: Update mathjax CDN URL for documentation
- PR #3062: Bumping xgboost version to match cuml version
- PR #3084: Fix artifacts in t-SNE results
- PR #3086: Reverting FIL Notebook Testing
- PR #3192: Enable pipeline usage for OneHotEncoder and LabelEncoder
- PR #3114: Fixed a typo in SVC's predict_proba AttributeError
- PR #3117: Fix two crashes in experimental RF backend
- PR #3119: Fix memset args for benchmark
- PR #3130: Return Python string from
dump_as_json()
of RF - PR #3132: Add
min_samples_split
+ Renamemin_rows_per_node
->min_samples_leaf
- PR #3136: Fix stochastic gradient descent example
- PR #3152: Fix access to attributes of individual NB objects in dask NB
- PR #3156: Force local conda artifact install
- PR #3162: Removing accidentally checked in debug file
- PR #3191: Fix repr function for preprocessing models
- PR #3175: Fix gtest pinned cmake version for build from source option
- PR #3182: Fix a bug in MSE metric calculation
- PR #3187: Update docstring to document behavior of
bootstrap=False
- PR #3215: Add a missing
__syncthreads()
- PR #3246: Fix MNMG KNN doc (adding batch_size)
- PR #3185: Add documentation for Distributed TFIDF Transformer
- PR #3190: Fix Attribute error on ICPA #3183 and PCA input type
- PR #3208: Fix EXITCODE override in notebook test script
- PR #3250: Fixing label binarizer bug with multiple partitions
- PR #3214: Correct flaky silhouette score test by setting atol
- PR #3216: Ignore splits that do not satisfy constraints
- PR #3239: Fix intermittent dask random forest failure
- PR #3243: Avoid unnecessary split for degenerate case where all labels are identical
- PR #3245: Rename
rows_sample
->max_samples
to be consistent with sklearn's RF - PR #3282: Add secondary test to kernel explainer pytests for stability in Volta
- PR #2922: Install RAFT headers with cuML
- PR #2909: Update allgatherv for compatibility with latest RAFT
- PR #2677: Ability to export RF trees as JSON
- PR #2698: Distributed TF-IDF transformer
- PR #2476: Porter Stemmer
- PR #2789: Dask LabelEncoder
- PR #2152: add FIL C++ benchmark
- PR #2638: Improve cython build with custom
build_ext
- PR #2866: Support XGBoost-style multiclass models (gradient boosted decision trees) in FIL C++
- PR #2874: Issue warning for degraded accuracy with float64 models in Treelite
- PR #2881: Introduces experimental batched backend for random forest
- PR #2916: Add SKLearn multi-class GBDT model support in FIL
- PR #2947: Add more warnings for accuracy degradation with 64-bit models
- PR #2873: Remove empty marker kernel code for NVTX markers
- PR #2796: Remove tokens of length 1 by default for text vectorizers
- PR #2741: Use rapids build packages in conda environments
- PR #2735: Update seed to random_state in random forest and associated tests
- PR #2739: Use cusparse_wrappers.h from RAFT
- PR #2729: Replace
cupy.sparse
withcupyx.scipy.sparse
- PR #2749: Correct docs for python version used in cuml_dev conda environment
- PR #2747: Adopting raft::handle_t and raft::comms::comms_t in cuML
- PR #2762: Fix broken links and provide minor edits to docs
- PR #2723: Support and enable convert_dtype in estimator predict
- PR #2758: Match sklearn's default n_components behavior for PCA
- PR #2770: Fix doxygen version during cmake
- PR #2766: Update default RandomForestRegressor score function to use r2
- PR #2775: Enablinbg mg gtests w/ raft mpi comms
- PR #2783: Add pytest that will fail when GPU IDs in Dask cluster are not unique
- PR #2784: Add SparseCumlArray container for sparse index/data arrays
- PR #2785: Add in cuML-specific dev conda dependencies
- PR #2778: Add README for FIL
- PR #2799: Reenable lightgbm test with lower (1%) proba accuracy
- PR #2800: Align cuML's spdlog version with RMM's
- PR #2824: Make data conversions warnings be debug level
- PR #2835: Rng prims, utils, and dependencies in RAFT
- PR #2541: Improve Documentation Examples and Source Linking
- PR #2837: Make the FIL node reorder loop more obvious
- PR #2849: make num_classes significant in FLOAT_SCALAR case
- PR #2792: Project flash (new build process) script changes
- PR #2850: Clean up unused params in paramsPCA
- PR #2871: Add timing function to utils
- PR #2863: in FIL, rename leaf_value_t enums to more descriptive
- PR #2867: improve stability of FIL benchmark measurements
- PR #2798: Add python tests for FIL multiclass classification of lightgbm models
- PR #2892: Update ci/local/README.md
- PR #2910: Adding Support for CuPy 8.x
- PR #2914: Add tests for XGBoost multi-class models in FIL
- PR #2622: Simplify tSNE perplexity search
- PR #2930: Pin libfaiss to <=1.6.3
- PR #2928: Updating Estimators Derived from Base for Consistency
- PR #2942: Adding
cuml.experimental
to the Docs - PR #3010: Improve gpuCI Scripts
- PR #3141: Move DistanceType enum to RAFT
- PR #2973: Allow data imputation for nan values
- PR #2982: Adjust kneighbors classifier test threshold to avoid intermittent failure
- PR #2885: Changing test target for NVTX wrapper test
- PR #2882: Allow import on machines without GPUs
- PR #2875: Bug fix to enable colorful NVTX markers
- PR #2744: Supporting larger number of classes in KNeighborsClassifier
- PR #2769: Remove outdated doxygen options for 1.8.20
- PR #2787: Skip lightgbm test for version 3 and above temporarily
- PR #2805: Retain index in stratified splitting for dataframes
- PR #2781: Use Python print to correctly redirect spdlogs when sys.stdout is changed
- PR #2787: Skip lightgbm test for version 3 and above temporarily
- PR #2813: Fix memory access in generation of non-row-major random blobs
- PR #2810: Update Rf MNMG threshold to prevent sporadic test failure
- PR #2808: Relax Doxygen version required in CMake to coincide with integration repo
- PR #2818: Fix parsing of singlegpu option in build command
- PR #2827: Force use of whole dataset when sample bootstrapping is disabled
- PR #2829: Fixing description for labels in docs and removing row number constraint from PCA xform/inverse_xform
- PR #2832: Updating stress tests that fail with OOM
- PR #2831: Removing repeated capture and parameter in lambda function
- PR #2847: Workaround for TSNE lockup, change caching preference.
- PR #2842: KNN index preprocessors were using incorrect n_samples
- PR #2848: Fix typo in Python docstring for UMAP
- PR #2856: Fix LabelEncoder for filtered input
- PR #2855: Updates for RMM being header only
- PR #2844: Fix for OPG KNN Classifier & Regressor
- PR #2880: Fix bugs in Auto-ARIMA when s==None
- PR #2877: TSNE exception for n_components > 2
- PR #2879: Update unit test for LabelEncoder on filtered input
- PR #2932: Marking KBinsDiscretizer pytests as xfail
- PR #2925: Fixing Owner Bug When Slicing CumlArray Objects
- PR #2931: Fix notebook error handling in gpuCI
- PR #2941: Fixing dask tsvd stress test failure
- PR #2943: Remove unused shuffle_features parameter
- PR #2940: Correcting labels meta dtype for
cuml.dask.make_classification
- PR #2965: Notebooks update
- PR #2955: Fix for conftest for singlegpu build
- PR #2968: Remove shuffle_features from RF param names
- PR #2957: Fix ols test size for stability
- PR #2972: Upgrade Treelite to 0.93
- PR #2981: Prevent unguarded import of sklearn in SVC
- PR #2984: Fix GPU test scripts gcov error
- PR #2990: Reduce MNMG kneighbors regressor test threshold
- PR #2997: Changing ARIMA
get/set_params
toget/set_fit_params
- PR #2581: Added model persistence via joblib in each section of estimator_intro.ipynb
- PR #2554: Hashing Vectorizer and general vectorizer improvements
- PR #2240: Making Dask models pickleable
- PR #2267: CountVectorizer estimator
- PR #2261: Exposing new FAISS metrics through Python API
- PR #2287: Single-GPU TfidfTransformer implementation
- PR #2289: QR SVD solver for MNMG PCA
- PR #2312: column-major support for make_blobs
- PR #2172: Initial support for auto-ARIMA
- PR #2394: Adding cosine & correlation distance for KNN
- PR #2392: PCA can accept sparse inputs, and sparse prim for computing covariance
- PR #2465: Support pandas 1.0+
- PR #2550: Single GPU Target Encoder
- PR #2519: Precision recall curve using cupy
- PR #2500: Replace UMAP functionality dependency on nvgraph with RAFT Spectral Clustering
- PR #2502: cuML Implementation of
sklearn.metrics.pairwise_distances
- PR #2520: TfidfVectorizer estimator
- PR #2211: MNMG KNN Classifier & Regressor
- PR #2461: Add KNN Sparse Output Functionality
- PR #2615: Incremental PCA
- PR #2594: Confidence intervals for ARIMA forecasts
- PR #2607: Add support for probability estimates in SVC
- PR #2618: SVM class and sample weights
- PR #2635: Decorator to generate docstrings with autodetection of parameters
- PR #2270: Multi class MNMG RF
- PR #2661: CUDA-11 support for single-gpu code
- PR #2322: Sparse FIL forests with 8-byte nodes
- PR #2675: Update conda recipes to support CUDA 11
- PR #2645: Add experimental, sklearn-based preprocessing
- PR #2336: Eliminate
rmm.device_array
usage - PR #2262: Using fully shared PartDescriptor in MNMG decomposiition, linear models, and solvers
- PR #2310: Pinning ucx-py to 0.14 to make 0.15 CI pass
- PR #1945: enable clang tidy
- PR #2339: umap performance improvements
- PR #2308: Using fixture for Dask client to eliminate possiblity of not closing
- PR #2345: make C++ logger level definition to be the same as python layer
- PR #2329: Add short commit hash to conda package name
- PR #2362: Implement binary/multi-classification log loss with cupy
- PR #2363: Update threshold and make other changes for stress tests
- PR #2371: Updating MBSGD tests to use larger batches
- PR #2380: Pinning libcumlprims version to ease future updates
- PR #2405: Remove references to deprecated RMM headers.
- PR #2340: Import ARIMA in the root init file and fix the
test_fit_function
test - PR #2408: Install meta packages for dependencies
- PR #2417: Move doc customization scripts to Jenkins
- PR #2427: Moving MNMG decomposition to cuml
- PR #2433: Add libcumlprims_mg to CMake
- PR #2420: Add and set convert_dtype default to True in estimator fit methods
- PR #2411: Refactor Mixin classes and use in classifier/regressor estimators
- PR #2442: fix setting RAFT_DIR from the RAFT_PATH env var
- PR #2469: Updating KNN c-api to document all arguments
- PR #2453: Add CumlArray to API doc
- PR #2440: Use Treelite Conda package
- PR #2403: Support for input and output type consistency in logistic regression predict_proba
- PR #2473: Add metrics.roc_auc_score to API docs. Additional readability and minor docs bug fixes
- PR #2468: Add
_n_features_in_
attribute to all single GPU estimators that implement fit - PR #2489: Removing explicit FAISS build and adding dependency on libfaiss conda package
- PR #2480: Moving MNMG glm and solvers to cuml
- PR #2490: Moving MNMG KMeans to cuml
- PR #2483: Moving MNMG KNN to cuml
- PR #2492: Adding additional assertions to mnmg nearest neighbors pytests
- PR #2439: Update dask RF code to have print_detailed function
- PR #2431: Match output of classifier predict with target dtype
- PR #2237: Refactor RF cython code
- PR #2513: Fixing LGTM Analysis Issues
- PR #2099: Raise an error when float64 data is used with dask RF
- PR #2522: Renaming a few arguments in KNeighbors* to be more readable
- PR #2499: Provide access to
cuml.DBSCAN
core samples - PR #2526: Removing PCA TSQR as a solver due to scalability issues
- PR #2536: Update conda upload versions for new supported CUDA/Python
- PR #2538: Remove Protobuf dependency
- PR #2553: Test pickle protocol 5 support
- PR #2570: Accepting single df or array input in train_test_split
- PR #2566: Remove deprecated cuDF from_gpu_matrix calls
- PR #2583: findpackage.cmake.in template for cmake dependencies
- PR #2577: Fully removing NVGraph dependency for CUDA 11 compatibility
- PR #2575: Speed up TfidfTransformer
- PR #2584: Removing dependency on sklearn's NotFittedError
- PR #2591: Generate benchmark datsets using
cuml.datasets
- PR #2548: Fix limitation on number of rows usable with tSNE and refactor memory allocation
- PR #2589: including cuda-11 build fixes into raft
- PR #2599: Add Stratified train_test_split
- PR #2487: Set classes_ attribute during classifier fit
- PR #2605: Reduce memory usage in tSNE
- PR #2611: Adding building doxygen docs to gpu ci
- PR #2631: Enabling use of gtest conda package for build
- PR #2623: Fixing kmeans score() API to be compatible with Scikit-learn
- PR #2629: Add naive_bayes api docs
- PR #2643: 'dense' and 'sparse' values of
storage_type
for FIL - PR #2691: Generic Base class attribute setter
- PR #2666: Update MBSGD documentation to mention that the model is experimental
- PR #2687: Update xgboost version to 1.2.0dev.rapidsai0.15
- PR #2684: CUDA 11 conda development environment yml and faiss patch
- PR #2648: Replace CNMeM with
rmm::mr::pool_memory_resource
. - PR #2686: Improve SVM tests
- PR #2692: Changin LBFGS log level
- PR #2705: Add sum operator and base operator overloader functions to cumlarray
- PR #2701: Updating README + Adding ref to UMAP paper
- PR #2721: Update API docs
- PR #2730: Unpin cumlprims in conda recipes for release
- PR #2369: Update RF code to fix set_params memory leak
- PR #2364: Fix for random projection
- PR #2373: Use Treelite Pip package in GPU testing
- PR #2376: Update documentation Links
- PR #2407: fixed batch count in DBScan for integer overflow case
- PR #2413: CumlArray and related methods updates to account for cuDF.Buffer contiguity update
- PR #2424: --singlegpu flag fix on build.sh script
- PR #2432: Using correct algo_name for UMAP in benchmark tests
- PR #2445: Restore access to coef_ property of Lasso
- PR #2441: Change p2p_enabled definition to work without ucx
- PR #2447: Drop
nvstrings
- PR #2450: Update local build to use new gpuCI image
- PR #2454: Mark RF memleak test as XFAIL, because we can't detect memleak reliably
- PR #2455: Use correct field to store data type in
LabelEncoder.fit_transform
- PR #2475: Fix typo in build.sh
- PR #2496: Fixing indentation for simulate_data in test_fil.py
- PR #2494: Set QN regularization strength consistent with scikit-learn
- PR #2486: Fix cupy input to kmeans init
- PR #2497: Changes to accomodate cuDF unsigned categorical changes
- PR #2209: Fix FIL benchmark for gpuarray-c input
- PR #2507: Import
treelite.sklearn
- PR #2521: Fixing invalid smem calculation in KNeighborsCLassifier
- PR #2515: Increase tolerance for LogisticRegression test
- PR #2532: Updating doxygen in new MG headers
- PR #2521: Fixing invalid smem calculation in KNeighborsCLassifier
- PR #2515: Increase tolerance for LogisticRegression test
- PR #2545: Fix documentation of n_iter_without_progress in tSNE Python bindings
- PR #2543: Improve numerical stability of QN solver
- PR #2544: Fix Barnes-Hut tSNE not using specified post_learning_rate
- PR #2558: Disabled a long-running FIL test
- PR #2540: Update default value for n_epochs in UMAP to match documentation & sklearn API
- PR #2535: Fix issue with incorrect docker image being used in local build script
- PR #2542: Fix small memory leak in TSNE
- PR #2552: Fixed the length argument of updateDevice calls in RF test
- PR #2565: Fix cell allocation code to avoid loops in quad-tree. Prevent NaNs causing infinite descent
- PR #2563: Update scipy call for arima gradient test
- PR #2569: Fix for cuDF update
- PR #2508: Use keyword parameters in sklearn.datasets.make_* functions
- PR #2587: Attributes for estimators relying on solvers
- PR #2586: Fix SVC decision function data type
- PR #2573: Considering managed memory as device type on checking for KMeans
- PR #2574: Fixing include path in
tsvd_mg.pyx
- PR #2506: Fix usage of CumlArray attributes on
cuml.common.base.Base
- PR #2593: Fix inconsistency in train_test_split
- PR #2609: Fix small doxygen issues
- PR #2610: Remove cuDF tolist call
- PR #2613: Removing thresholds from kmeans score tests (SG+MG)
- PR #2616: Small test code fix for pandas dtype tests
- PR #2617: Fix floating point precision error in tSNE
- PR #2625: Update Estimator notebook to resolve errors
- PR #2634: singlegpu build option fixes
- PR #2641: [Breaking] Make
max_depth
in RF compatible with scikit-learn - PR #2650: Make max_depth behave consistently for max_depth > 14
- PR #2651: AutoARIMA Python bug fix
- PR #2654: Fix for vectorizer concatenations
- PR #2655: Fix C++ RF predict function access of rows/samples array
- PR #2649: Cleanup sphinx doc warnings for 0.15
- PR #2668: Order conversion improvements to account for cupy behavior changes
- PR #2669: Revert PR 2655 Revert "Fixes C++ RF predict function"
- PR #2683: Fix incorrect "Bad CumlArray Use" error messages on test failures
- PR #2695: Fix debug build issue due to incorrect host/device method setup
- PR #2709: Fixing OneHotEncoder Overflow Error
- PR #2710: Fix SVC doc statement about predic_proba
- PR #2726: Return correct output type in QN
- PR #2711: Fix Dask RF failure intermittently
- PR #2718: Fix temp directory for py.test
- PR #2719: Set KNeighborsRegressor output dtype according to training target dtype
- PR #2720: Updates to outdated links
- PR #2722: Getting cuML covariance test passing w/ Cupy 7.8 & CUDA 11
- PR #1994: Support for distributed OneHotEncoder
- PR #1892: One hot encoder implementation with cupy
- PR #1655: Adds python bindings for homogeneity score
- PR #1704: Adds python bindings for completeness score
- PR #1687: Adds python bindings for mutual info score
- PR #1980: prim: added a new write-only unary op prim
- PR #1867: C++: add logging interface support in cuML based spdlog
- PR #1902: Multi class inference in FIL C++ and importing multi-class forests from treelite
- PR #1906: UMAP MNMG
- PR #2067: python: wrap logging interface in cython
- PR #2083: Added dtype, order, and use_full_low_rank to MNMG
make_regression
- PR #2074: SG and MNMG
make_classification
- PR #2127: Added order to SG
make_blobs
, and switch from C++ to cupy based implementation - PR #2057: Weighted k-means
- PR #2256: Add a
make_arima
generator - PR #2245: ElasticNet, Lasso and Coordinate Descent MNMG
- PR #2242: Pandas input support with output as NumPy arrays by default
- PR #2551: Add cuML RF multiclass prediction using FIL from python
- PR #1728: Added notebook testing to gpuCI gpu build
- PR #1931: C++: enabled doxygen docs for all of the C++ codebase
- PR #1944: Support for dask_cudf.core.Series in _extract_partitions
- PR #1947: Cleaning up cmake
- PR #1927: Use Cython's
new_build_ext
(if available) - PR #1946: Removed zlib dependency from cmake
- PR #1988: C++: cpp bench refactor
- PR #1873: Remove usage of nvstring and nvcat from LabelEncoder
- PR #1968: Update SVC SVR with cuML Array
- PR #1972: updates to our flow to use conda-forge's clang and clang-tools packages
- PR #1974: Reduce ARIMA testing time
- PR #1984: Enable Ninja build
- PR #1985: C++ UMAP parametrizable tests
- PR #2005: Adding missing algorithms to cuml benchmarks and notebook
- PR #2016: Add capability to setup.py and build.sh to fully clean all cython build files and artifacts
- PR #2044: A cuda-memcheck helper wrapper for devs
- PR #2018: Using
cuml.dask.part_utils.extract_partitions
and removing similar, duplicated code - PR #2019: Enable doxygen build in our nightly doc build CI script
- PR #1996: Cythonize in parallel
- PR #2032: Reduce number of tests for MBSGD to improve CI running time
- PR #2031: Encapsulating UCX-py interactions in singleton
- PR #2029: Add C++ ARIMA log-likelihood benchmark
- PR #2085: Convert TSNE to use CumlArray
- PR #2051: Reduce the time required to run dask pca and dask tsvd tests
- PR #1981: Using CumlArray in kNN and DistributedDataHandler in dask kNN
- PR #2053: Introduce verbosity level in C++ layer instead of boolean
verbose
flag - PR #2047: Make internal streams non-blocking w.r.t. NULL stream
- PR #2048: Random forest testing speedup
- PR #2058: Use CumlArray in Random Projection
- PR #2068: Updating knn class probabilities to use make_monotonic instead of binary search
- PR #2062: Adding random state to UMAP mnmg tests
- PR #2064: Speed-up K-Means test
- PR #2015: Renaming .h to .cuh in solver, dbscan and svm
- PR #2080: Improved import of sparse FIL forests from treelite
- PR #2090: Upgrade C++ build to C++14 standard
- PR #2089: CI: enabled cuda-memcheck on ml-prims unit-tests during nightly build
- PR #2128: Update Dask RF code to reduce the time required for GPU predict to run
- PR #2125: Build infrastructure to use RAFT
- PR #2131: Update Dask RF fit to use DistributedDataHandler
- PR #2055: Update the metrics notebook to use important cuML models
- PR #2095: Improved import of src_prims/utils.h, making it less ambiguous
- PR #2118: Updating SGD & mini-batch estimators to use CumlArray
- PR #2120: Speeding up dask RandomForest tests
- PR #1883: Use CumlArray in ARIMA
- PR #877: Adding definition of done criteria to wiki
- PR #2135: A few optimizations to UMAP fuzzy simplicial set
- PR #1914: Change the meaning of ARIMA's intercept to match the literature
- PR #2098: Renaming .h to .cuh in decision_tree, glm, pca
- PR #2150: Remove deprecated RMM calls in RMM allocator adapter
- PR #2146: Remove deprecated kalman filter
- PR #2151: Add pytest duration and pytest timeout
- PR #2156: Add Docker 19 support to local gpuci build
- PR #2178: Reduce duplicated code in RF
- PR #2124: Expand tutorial docs and sample notebook
- PR #2175: Allow CPU-only and dataset params for benchmark sweeps
- PR #2186: Refactor cython code to build OPG structs in common utils file
- PR #2180: Add fully single GPU singlegpu python build
- PR #2187: CMake improvements to manage conda environment dependencies
- PR #2185: Add has_sklearn function and use it in datasets/classification.
- PR #2193: Order-independent local shuffle in
cuml.dask.make_regression
- PR #2204: Update python layer to use the logger interface
- PR #2184: Refoctor headers for holtwinters, rproj, tsvd, tsne, umap
- PR #2199: Remove unncessary notebooks
- PR #2195: Separating fit and transform calls in SG, MNMG PCA to save transform array memory consumption
- PR #2201: Re-enabling UMAP repro tests
- PR #2132: Add SVM C++ benchmarks
- PR #2196: Updates to benchmarks. Moving notebook
- PR #2208: Coordinate Descent, Lasso and ElasticNet CumlArray updates
- PR #2210: Updating KNN tests to evaluate multiple index partitions
- PR #2205: Use timeout to add 2 hour hard limit to dask tests
- PR #2212: Improve DBScan batch count / memory estimation
- PR #2213: Standardized include statements across all cpp source files, updated copyright on all modified files
- PR #2214: Remove utils folder and refactor to common folder
- PR #2220: Final refactoring of all src_prims header files following rules as specified in #1675
- PR #2225: input_to_cuml_array keep order option, test updates and cleanup
- PR #2244: Re-enable slow ARIMA tests as stress tests
- PR #2231: Using OPG structs from
cuml.common
in decomposition algorithms - PR #2257: Update QN and LogisticRegression to use CumlArray
- PR #2259: Add CumlArray support to Naive Bayes
- PR #2252: Add benchmark for the Gram matrix prims
- PR #2263: Faster serialization for Treelite objects with RF
- PR #2264: Reduce build time for cuML by using make_blobs from libcuml++ interface
- PR #2269: Add docs targets to build.sh and fix python cuml.common docs
- PR #2271: Clarify doc for
_unique
default implementation in OneHotEncoder - PR #2272: Add docs build.sh script to repository
- PR #2276: Ensure
CumlArray
provideddtype
conforms - PR #2281: Rely on cuDF's
Serializable
inCumlArray
- PR #2284: Reduce dataset size in SG RF notebook to reduce run time of sklearn
- PR #2285: Increase the threshold for elastic_net test in dask/test_coordinate_descent
- PR #2314: Update FIL default values, documentation and test
- PR #2316: 0.14 release docs additions and fixes
- PR #2320: Add prediction notes to RF docs
- PR #2323: Change verbose levels and parameter name to match Scikit-learn API
- PR #2324: Raise an error if n_bins > number of training samples in RF
- PR #2335: Throw a warning if treelite cannot be imported and
load_from_sklearn
is used
- PR #1939: Fix syntax error in cuml.common.array
- PR #1941: Remove c++ cuda flag that was getting duplicated in CMake
- PR #1971: python: Correctly honor --singlegpu option and CUML_BUILD_PATH env variable
- PR #1969: Update libcumlprims to 0.14
- PR #1973: Add missing mg files for setup.py --singlegpu flag
- PR #1993: Set
umap_transform_reproducibility
tests to xfail - PR #2004: Refactoring the arguments to
plant()
call - PR #2017: Fixing memory issue in weak cc prim
- PR #2028: Skipping UMAP knn reproducibility tests until we figure out why its failing in CUDA 10.2
- PR #2024: Fixed cuda-memcheck errors with sample-without-replacement prim
- PR #1540: prims: support for custom math-type used for computation inside adjusted rand index prim
- PR #2077: dask-make blobs arguments to match sklearn
- PR #2059: Make all Scipy imports conditional
- PR #2078: Ignore negative cache indices in get_vecs
- PR #2084: Fixed cuda-memcheck errors with COO unit-tests
- PR #2087: Fixed cuda-memcheck errors with dispersion prim
- PR #2096: Fixed syntax error with nightly build command for memcheck unit-tests
- PR #2115: Fixed contingency matrix prim unit-tests for computing correct golden values
- PR #2107: Fix PCA transform
- PR #2109: input_to_cuml_array cuda_array_interface bugfix
- PR #2117: cuDF array exception small fixes
- PR #2139: CumlArray for adjusted_rand_score
- PR #2140: Returning self in fit model functions
- PR #2144: Remove GPU arch < 60 from CMake build
- PR #2153: Added missing namespaces to some Decision Tree files
- PR #2155: C++: fix doxygen build break
- PR #2161: Replacing depreciated bruteForceKnn
- PR #2162: Use stream in transpose prim
- PR #2165: Fit function test correction
- PR #2166: Fix handling of temp file in RF pickling
- PR #2176: C++: fix for adjusted rand index when input array is all zeros
- PR #2179: Fix clang tools version in libcuml recipe
- PR #2183: Fix RAFT in nightly package
- PR #2191: Fix placement of SVM parameter documentation and add examples
- PR #2212: Fix DBScan results (no propagation of labels through border points)
- PR #2215: Fix the printing of forest object
- PR #2217: Fix opg_utils naming to fix singlegpu build
- PR #2223: Fix bug in ARIMA C++ benchmark
- PR #2224: Temporary fix for CI until new Dask version is released
- PR #2228: Update to use reduce_ex in CumlArray to override cudf.Buffer
- PR #2249: Fix bug in UMAP continuous target metrics
- PR #2258: Fix doxygen build break
- PR #2255: Set random_state for train_test_split function in dask RF
- PR #2275: Fix RF fit memory leak
- PR #2274: Fix parameter name verbose to verbosity in mnmg OneHotEncoder
- PR #2277: Updated cub repo path and branch name
- PR #2282: Fix memory leak in Dask RF concatenation
- PR #2301: Scaling KNN dask tests sample size with n GPUs
- PR #2293: Contiguity fixes for input_to_cuml_array and train_test_split
- PR #2295: Fix convert_to_dtype copy even with same dtype
- PR #2305: Fixed race condition in DBScan
- PR #2354: Fix broken links in README
- PR #2619: Explicitly skip raft test folder for pytest 6.0.0
- PR #2788: Set the minimum number of columns that can be sampled to 1 to fix 0 mem allocation error
- PR #1777: Python bindings for entropy
- PR #1742: Mean squared error implementation with cupy
- PR #1817: Confusion matrix implementation with cupy (SNSG and MNMG)
- PR #1766: Mean absolute error implementation with cupy
- PR #1766: Mean squared log error implementation with cupy
- PR #1635: cuML Array shim and configurable output added to cluster methods
- PR #1586: Seasonal ARIMA
- PR #1683: cuml.dask make_regression
- PR #1689: Add framework for cuML Dask serializers
- PR #1709: Add
decision_function()
andpredict_proba()
for LogisticRegression - PR #1714: Add
print_env.sh
file to gather important environment details - PR #1750: LinearRegression CumlArray for configurable output
- PR #1814: ROC AUC score implementation with cupy
- PR #1767: Single GPU decomposition models configurable output
- PR #1646: Using FIL to predict in MNMG RF
- PR #1778: Make cuML Handle picklable
- PR #1738: cuml.dask refactor beginning and dask array input option for OLS, Ridge and KMeans
- PR #1874: Add predict_proba function to RF classifier
- PR #1815: Adding KNN parameter to UMAP
- PR #1978: Adding
predict_proba
function to dask RF
- PR #1644: Add
predict_proba()
for FIL binary classifier - PR #1620: Pickling tests now automatically finds all model classes inheriting from cuml.Base
- PR #1637: Update to newer treelite version with XGBoost 1.0 compatibility
- PR #1632: Fix MBSGD models inheritance, they now inherits from cuml.Base
- PR #1628: Remove submodules from cuML
- PR #1755: Expose the build_treelite function for python
- PR #1649: Add the fil_sparse_format variable option to RF API
- PR #1647: storage_type=AUTO uses SPARSE for large models
- PR #1668: Update the warning statement thrown in RF when the seed is set but n_streams is not 1
- PR #1662: use of direct cusparse calls for coo2csr, instead of depending on nvgraph
- PR #1747: C++: dbscan performance improvements and cleanup
- PR #1697: Making trustworthiness batchable and using proper workspace
- PR #1721: Improving UMAP pytests
- PR #1717: Call
rmm_cupy_allocator
for CuPy allocations - PR #1718: Import
using_allocator
fromcupy.cuda
- PR #1723: Update RF Classifier to throw an exception for multi-class pickling
- PR #1726: Decorator to allocate CuPy arrays with RMM
- PR #1719: UMAP random seed reproducibility
- PR #1748: Test serializing
CumlArray
objects - PR #1776: Refactoring pca/tsvd distributed
- PR #1762: Update CuPy requirement to 7
- PR #1768: C++: Different input and output types for add and subtract prims
- PR #1790: Add support for multiple seeding in k-means++
- PR #1805: Adding new Dask cuda serializers to naive bayes + a trivial perf update
- PR #1812: C++: bench: UMAP benchmark cases added
- PR #1795: Add capability to build CumlArray from bytearray/memoryview objects
- PR #1824: C++: improving the performance of UMAP algo
- PR #1816: Add ARIMA notebook
- PR #1856: Update docs for 0.13
- PR #1827: Add HPO demo Notebook
- PR #1825:
--nvtx
option inbuild.sh
- PR #1847: Update XGBoost version for CI
- PR #1837: Simplify cuML Array construction
- PR #1848: Rely on subclassing for cuML Array serialization
- PR #1866: Minimizing client memory pressure on Naive Bayes
- PR #1788: Removing complexity bottleneck in S-ARIMA
- PR #1873: Remove usage of nvstring and nvcat from LabelEncoder
- PR #1891: Additional improvements to naive bayes tree reduction
- PR #1835 : Fix calling default RF Classification always
- PT #1904: replace cub sort
- PR #1833: Fix depth issue in shallow RF regression estimators
- PR #1770: Warn that KalmanFilter is deprecated
- PR #1775: Allow CumlArray to work with inputs that have no 'strides' in array interface
- PR #1594: Train-test split is now reproducible
- PR #1590: Fix destination directory structure for run-clang-format.py
- PR #1611: Fixing pickling errors for KNN classifier and regressor
- PR #1617: Fixing pickling issues for SVC and SVR
- PR #1634: Fix title in KNN docs
- PR #1627: Adding a check for multi-class data in RF classification
- PR #1654: Skip treelite patch if its already been applied
- PR #1661: Fix nvstring variable name
- PR #1673: Using struct for caching dlsym state in communicator
- PR #1659: TSNE - introduce 'convert_dtype' and refactor class attr 'Y' to 'embedding_'
- PR #1672: Solver 'svd' in Linear and Ridge Regressors when n_cols=1
- PR #1670: Lasso & ElasticNet - cuml Handle added
- PR #1671: Update for accessing cuDF Series pointer
- PR #1652: Support XGBoost 1.0+ models in FIL
- PR #1702: Fix LightGBM-FIL validation test
- PR #1701: test_score kmeans test passing with newer cupy version
- PR #1706: Remove multi-class bug from QuasiNewton
- PR #1699: Limit CuPy to <7.2 temporarily
- PR #1708: Correctly deallocate cuML handles in Cython
- PR #1730: Fixes to KF for test stability (mainly in CUDA 10.2)
- PR #1729: Fixing naive bayes UCX serialization problem in fit()
- PR #1749: bug fix rf classifier/regressor on seg fault in bench
- PR #1751: Updated RF documentation
- PR #1765: Update the checks for using RF GPU predict
- PR #1787: C++: unit-tests to check for RF accuracy. As well as a bug fix to improve RF accuracy
- PR #1793: Updated fil pyx to solve memory leakage issue
- PR #1810: Quickfix - chunkage in dask make_regression
- PR #1842: DistributedDataHandler not properly setting 'multiple'
- PR #1849: Critical fix in ARIMA initial estimate
- PR #1851: Fix for cuDF behavior change for multidimensional arrays
- PR #1852: Remove Thrust warnings
- PR #1868: Turning off IPC caching until it is fixed in UCX-py/UCX
- PR #1876: UMAP exponential decay parameters fix
- PR #1887: Fix hasattr for missing attributes on base models
- PR #1877: Remove resetting index in shuffling in train_test_split
- PR #1893: Updating UCX in comms to match current UCX-py
- PR #1888: Small train_test_split test fix
- PR #1899: Fix dask
extract_partitions()
, remove transformation as instance variable in PCA and TSVD and match sklearn APIs - PR #1920: Temporarily raising threshold for UMAP reproducibility tests
- PR #1918: Create memleak fixture to skip memleak tests in CI for now
- PR #1926: Update batch matrix test margins
- PR #1925: Fix failing dask tests
- PR #1936: Update DaskRF regression test to xfail
- PR #1932: Isolating cause of make_blobs failure
- PR #1951: Dask Random forest regression CPU predict bug fix
- PR #1948: Adjust BatchedMargin margin and disable tests temporarily
- PR #1950: Fix UMAP test failure
- PR #1483: prims: Fused L2 distance and nearest-neighbor prim
- PR #1494: bench: ml-prims benchmark
- PR #1514: bench: Fused L2 NN prim benchmark
- PR #1411: Cython side of MNMG OLS
- PR #1520: Cython side of MNMG Ridge Regression
- PR #1516: Suppor Vector Regression (epsilon-SVR)
- PR #1638: Update cuml/docs/README.md
- PR #1468: C++: updates to clang format flow to make it more usable among devs
- PR #1473: C++: lazy initialization of "costly" resources inside cumlHandle
- PR #1443: Added a new overloaded GEMM primitive
- PR #1489: Enabling deep trees using Gather tree builder
- PR #1463: Update FAISS submodule to 1.6.1
- PR #1488: Add codeowners
- PR #1432: Row-major (C-style) GPU arrays for benchmarks
- PR #1490: Use dask master instead of conda package for testing
- PR #1375: Naive Bayes & Distributed Naive Bayes
- PR #1377: Add GPU array support for FIL benchmarking
- PR #1493: kmeans: add tiling support for 1-NN computation and use fusedL2-1NN prim for L2 distance metric
- PR #1532: Update CuPy to >= 6.6 and allow 7.0
- PR #1528: Re-enabling KNN using dynamic library loading for UCX in communicator
- PR #1545: Add conda environment version updates to ci script
- PR #1541: Updates for libcudf++ Python refactor
- PR #1555: FIL-SKL, an SKLearn-based benchmark for FIL
- PR #1537: Improve pickling and scoring suppport for many models to support hyperopt
- PR #1551: Change custom kernel to cupy for col/row order transform
- PR #1533: C++: interface header file separation for SVM
- PR #1560: Helper function to allocate all new CuPy arrays with RMM memory management
- PR #1570: Relax nccl in conda recipes to >=2.4 (matching CI)
- PR #1578: Add missing function information to the cuML documenataion
- PR #1584: Add has_scipy utility function for runtime check
- PR #1583: API docs updates for 0.12
- PR #1591: Updated FIL documentation
- PR #1470: Documentation: add make_regression, fix ARIMA section
- PR #1482: Updated the code to remove sklearn from the mbsgd stress test
- PR #1491: Update dev environments for 0.12
- PR #1512: Updating setup_cpu() in SpeedupComparisonRunner
- PR #1498: Add build.sh to code owners
- PR #1505: cmake: added correct dependencies for prims-bench build
- PR #1534: Removed TODO comment in create_ucp_listeners()
- PR #1548: Fixing umap extra unary op in knn graph
- PR #1547: Fixing MNMG kmeans score. Fixing UMAP pickling before fit(). Fixing UMAP test failures.
- PR #1557: Increasing threshold for kmeans score
- PR #1562: Increasing threshold even higher
- PR #1564: Fixed a typo in function cumlMPICommunicator_impl::syncStream
- PR #1569: Remove Scikit-learn exception and depedenncy in SVM
- PR #1575: Add missing dtype parameter in call to strides to order for CuPy 6.6 code path
- PR #1574: Updated the init file to include SVM
- PR #1589: Fixing the default value for RF and updating mnmg predict to accept cudf
- PR #1601: Fixed wrong datatype used in knn voting kernel
- PR #1295: Cython side of MNMG PCA
- PR #1218: prims: histogram prim
- PR #1129: C++: Separate include folder for C++ API distribution
- PR #1282: OPG KNN MNMG Code (disabled for 0.11)
- PR #1242: Initial implementation of FIL sparse forests
- PR #1194: Initial ARIMA time-series modeling support.
- PR #1286: Importing treelite models as FIL sparse forests
- PR #1285: Fea minimum impurity decrease RF param
- PR #1301: Add make_regression to generate regression datasets
- PR #1322: RF pickling using treelite, protobuf and FIL
- PR #1332: Add option to cuml.dask make_blobs to produce dask array
- PR #1307: Add RF regression benchmark
- PR #1327: Update the code to build treelite with protobuf
- PR #1289: Add Python benchmarking support for FIL
- PR #1371: Cython side of MNMG tSVD
- PR #1386: Expose SVC decision function value
- PR #1170: Use git to clone subprojects instead of git submodules
- PR #1239: Updated the treelite version
- PR #1225: setup.py clone dependencies like cmake and correct include paths
- PR #1224: Refactored FIL to prepare for sparse trees
- PR #1249: Include libcuml.so C API in installed targets
- PR #1259: Conda dev environment updates and use libcumlprims current version in CI
- PR #1277: Change dependency order in cmake for better printing at compile time
- PR #1264: Add -s flag to GPU CI pytest for better error printing
- PR #1271: Updated the Ridge regression documentation
- PR #1283: Updated the cuMl docs to include MBSGD and adjusted_rand_score
- PR #1300: Lowercase parameter versions for FIL algorithms
- PR #1312: Update CuPy to version 6.5 and use conda-forge channel
- PR #1336: Import SciKit-Learn models into FIL
- PR #1314: Added options needed for ASVDb output (CUDA ver, etc.), added option to select algos
- PR #1335: Options to print available algorithms and datasets in the Python benchmark
- PR #1338: Remove BUILD_ABI references in CI scripts
- PR #1340: Updated unit tests to uses larger dataset
- PR #1351: Build treelite temporarily for GPU CI testing of FIL Scikit-learn model importing
- PR #1367: --test-split benchmark parameter for train-test split
- PR #1360: Improved tests for importing SciKit-Learn models into FIL
- PR #1368: Add --num-rows benchmark command line argument
- PR #1351: Build treelite temporarily for GPU CI testing of FIL Scikit-learn model importing
- PR #1366: Modify train_test_split to use CuPy and accept device arrays
- PR #1258: Documenting new MPI communicator for multi-node multi-GPU testing
- PR #1345: Removing deprecated should_downcast argument
- PR #1362: device_buffer in UMAP + Sparse prims
- PR #1376: AUTO value for FIL algorithm
- PR #1408: Updated pickle tests to delete the pre-pickled model to prevent pointer leakage
- PR #1357: Run benchmarks multiple times for CI
- PR #1382: ARIMA optimization: move functions to C++ side
- PR #1392: Updated RF code to reduce duplication of the code
- PR #1444: UCX listener running in its own isolated thread
- PR #1445: Improved performance of FIL sparse trees
- PR #1431: Updated API docs
- PR #1441: Remove unused CUDA conda labels
- PR #1439: Match sklearn 0.22 default n_estimators for RF and fix test errors
- PR #1461: Add kneighbors to API docs
- PR #1281: Making rng.h threadsafe
- PR #1212: Fix cmake git cloning always running configure in subprojects
- PR #1261: Fix comms build errors due to cuml++ include folder changes
- PR #1267: Update build.sh for recent change of building comms in main CMakeLists
- PR #1278: Removed incorrect overloaded instance of eigJacobi
- PR #1302: Updates for numba 0.46
- PR #1313: Updated the RF tests to set the seed and n_streams
- PR #1319: Using machineName arg passed in instead of default for ASV reporting
- PR #1326: Fix illegal memory access in make_regression (bounds issue)
- PR #1330: Fix C++ unit test utils for better handling of differences near zero
- PR #1342: Fix to prevent memory leakage in Lasso and ElasticNet
- PR #1337: Fix k-means init from preset cluster centers
- PR #1354: Fix SVM gamma=scale implementation
- PR #1344: Change other solver based methods to create solver object in init
- PR #1373: Fixing a few small bugs in make_blobs and adding asserts to pytests
- PR #1361: Improve SMO error handling
- PR #1384: Lower expectations on batched matrix tests to prevent CI failures
- PR #1380: Fix memory leaks in ARIMA
- PR #1391: Lower expectations on batched matrix tests even more
- PR #1394: Warning added in svd for cuda version 10.1
- PR #1407: Resolved RF predict issues and updated RF docstring
- PR #1401: Patch for lbfgs solver for logistic regression with no l1 penalty
- PR #1416: train_test_split numba and rmm device_array output bugfix
- PR #1419: UMAP pickle tests are using wrong n_neighbors value for trustworthiness
- PR #1438: KNN Classifier to properly return Dataframe with Dataframe input
- PR #1425: Deprecate seed and use random_state similar to Scikit-learn in train_test_split
- PR #1458: Add joblib as an explicit requirement
- PR #1474: Defer knn mnmg to 0.12 nightly builds and disable ucx-py dependency
- PR #1148: C++ benchmark tool for c++/CUDA code inside cuML
- PR #1071: Selective eigen solver of cuSolver
- PR #1073: Updating RF wrappers to use FIL for GPU accelerated prediction
- PR #1104: CUDA 10.1 support
- PR #1113: prims: new batched make-symmetric-matrix primitive
- PR #1112: prims: new batched-gemv primitive
- PR #855: Added benchmark tools
- PR #1149 Add YYMMDD to version tag for nightly conda packages
- PR #892: General Gram matrices prim
- PR #912: Support Vector Machine
- PR #1274: Updated the RF score function to use GPU predict
- PR #961: High Peformance RF; HIST algo
- PR #1028: Dockerfile updates after dir restructure. Conda env yaml to add statsmodels as a dependency
- PR #1047: Consistent OPG interface for kmeans, based on internal libcumlprims update
- PR #763: Add examples to train_test_split documentation
- PR #1093: Unified inference kernels for different FIL algorithms
- PR #1076: Paying off some UMAP / Spectral tech debt.
- PR #1086: Ensure RegressorMixin scorer uses device arrays
- PR #1110: Adding tests to use default values of parameters of the models
- PR #1108: input_to_host_array function in input_utils for input processing to host arrays
- PR #1114: K-means: Exposing useful params, removing unused params, proxying params in Dask
- PR #1138: Implementing ANY_RANK semantics on irecv
- PR #1142: prims: expose separate InType and OutType for unaryOp and binaryOp
- PR #1115: Moving dask_make_blobs to cuml.dask.datasets. Adding conversion to dask.DataFrame
- PR #1136: CUDA 10.1 CI updates
- PR #1135: K-means: add boundary cases for kmeans||, support finer control with convergence
- PR #1163: Some more correctness improvements. Better verbose printing
- PR #1165: Adding except + in all remaining cython
- PR #1186: Using LocalCUDACluster Pytest fixture
- PR #1173: Docs: Barnes Hut TSNE documentation
- PR #1176: Use new RMM API based on Cython
- PR #1219: Adding custom bench_func and verbose logging to cuml.benchmark
- PR #1247: Improved MNMG RF error checking
- PR #1231: RF respect number of cuda streams from cuml handle
- PR #1230: Rf bugfix memleak in regression
- PR #1208: compile dbscan bug
- PR #1016: Use correct libcumlprims version in GPU CI
- PR #1040: Update version of numba in development conda yaml files
- PR #1043: Updates to accomodate cuDF python code reorganization
- PR #1044: Remove nvidia driver installation from ci/cpu/build.sh
- PR #991: Barnes Hut TSNE Memory Issue Fixes
- PR #1075: Pinning Dask version for consistent CI results
- PR #990: Barnes Hut TSNE Memory Issue Fixes
- PR #1066: Using proper set of workers to destroy nccl comms
- PR #1072: Remove pip requirements and setup
- PR #1074: Fix flake8 CI style check
- PR #1087: Accuracy improvement for sqrt/log in RF max_feature
- PR #1088: Change straggling numba python allocations to use RMM
- PR #1106: Pinning Distributed version to match Dask for consistent CI results
- PR #1116: TSNE CUDA 10.1 Bug Fixes
- PR #1132: DBSCAN Batching Bug Fix
- PR #1162: DASK RF random seed bug fix
- PR #1164: Fix check_dtype arg handling for input_to_dev_array
- PR #1171: SVM prediction bug fix
- PR #1177: Update dask and distributed to 2.5
- PR #1204: Fix SVM crash on Turing
- PR #1199: Replaced sprintf() with snprintf() in THROW()
- PR #1205: Update dask-cuda in yml envs
- PR #1211: Fixing Dask k-means transform bug and adding test
- PR #1236: Improve fix for SMO solvers potential crash on Turing
- PR #1251: Disable compiler optimization for CUDA 10.1 for distance prims
- PR #1260: Small bugfix for major conversion in input_utils
- PR #1276: Fix float64 prediction crash in test_random_forest
- PR #894: Convert RF to treelite format
- PR #826: Jones transformation of params for ARIMA models timeSeries ml-prim
- PR #697: Silhouette Score metric ml-prim
- PR #674: KL Divergence metric ml-prim
- PR #787: homogeneity, completeness and v-measure metrics ml-prim
- PR #711: Mutual Information metric ml-prim
- PR #724: Entropy metric ml-prim
- PR #766: Expose score method based on inertia for KMeans
- PR #823: prims: cluster dispersion metric
- PR #816: Added inverse_transform() for LabelEncoder
- PR #789: prims: sampling without replacement
- PR #813: prims: Col major istance prim
- PR #635: Random Forest & Decision Tree Regression (Single-GPU)
- PR #819: Forest Inferencing Library (FIL)
- PR #829: C++: enable nvtx ranges
- PR #835: Holt-Winters algorithm
- PR #837: treelite for decision forest exchange format
- PR #871: Wrapper for FIL
- PR #870: make_blobs python function
- PR #881: wrappers for accuracy_score and adjusted_rand_score functions
- PR #840: Dask RF classification and regression
- PR #870: make_blobs python function
- PR #879: import of treelite models to FIL
- PR #892: General Gram matrices prim
- PR #883: Adding MNMG Kmeans
- PR #930: Dask RF
- PR #882: TSNE - T-Distributed Stochastic Neighbourhood Embedding
- PR #624: Internals API & Graph Based Dimensionality Reductions Callback
- PR #926: Wrapper for FIL
- PR #994: Adding MPI comm impl for testing / benchmarking MNMG CUDA
- PR #960: Enable using libcumlprims for MG algorithms/prims
- PR #822: build: build.sh update to club all make targets together
- PR #807: Added development conda yml files
- PR #840: Require cmake >= 3.14
- PR #832: Stateless Decision Tree and Random Forest API
- PR #857: Small modifications to comms for utilizing IB w/ Dask
- PR #851: Random forest Stateless API wrappers
- PR #865: High Performance RF
- PR #895: Pretty prints arguments!
- PR #920: Add an empty marker kernel for tracing purposes
- PR #915: syncStream added to cumlCommunicator
- PR #922: Random Forest support in FIL
- PR #911: Update headers to credit CannyLabs BH TSNE implementation
- PR #918: Streamline CUDA_REL environment variable
- PR #924: kmeans: updated APIs to be stateless, refactored code for mnmg support
- PR #950: global_bias support in FIL
- PR #773: Significant improvements to input checking of all classes and common input API for Python
- PR #957: Adding docs to RF & KMeans MNMG. Small fixes for release
- PR #965: Making dask-ml a hard dependency
- PR #976: Update api.rst for new 0.9 classes
- PR #973: Use cudaDeviceGetAttribute instead of relying on cudaDeviceProp object being passed
- PR #978: Update README for 0.9
- PR #1009: Fix references to notebooks-contrib
- PR #1015: Ability to control the number of internal streams in cumlHandle_impl via cumlHandle
- PR #1175: Add more modules to docs ToC
- PR #923: Fix misshapen level/trend/season HoltWinters output
- PR #831: Update conda package dependencies to cudf 0.9
- PR #772: Add missing cython headers to SGD and CD
- PR #849: PCA no attribute trans_input_ transform bug fix
- PR #869: Removing incorrect information from KNN Docs
- PR #885: libclang installation fix for GPUCI
- PR #896: Fix typo in comms build instructions
- PR #921: Fix build scripts using incorrect cudf version
- PR #928: TSNE Stability Adjustments
- PR #934: Cache cudaDeviceProp in cumlHandle for perf reasons
- PR #932: Change default param value for RF classifier
- PR #949: Fix dtype conversion tests for unsupported cudf dtypes
- PR #908: Fix local build generated file ownerships
- PR #983: Change RF max_depth default to 16
- PR #987: Change default values for knn
- PR #988: Switch to exact tsne
- PR #991: Cleanup python code in cuml.dask.cluster
- PR #996: ucx_initialized being properly set in CommsContext
- PR #1007: Throws a well defined error when mutigpu is not enabled
- PR #1018: Hint location of nccl in build.sh for CI
- PR #1022: Using random_state to make K-Means MNMG tests deterministic
- PR #1034: Fix typos and formatting issues in RF docs
- PR #1052: Fix the rows_sample dtype to float
- PR #652: Adjusted Rand Index metric ml-prim
- PR #679: Class label manipulation ml-prim
- PR #636: Rand Index metric ml-prim
- PR #515: Added Random Projection feature
- PR #504: Contingency matrix ml-prim
- PR #644: Add train_test_split utility for cuDF dataframes
- PR #612: Allow Cuda Array Interface, Numba inputs and input code refactor
- PR #641: C: Separate C-wrapper library build to generate libcuml.so
- PR #631: Add nvcategory based ordinal label encoder
- PR #681: Add MBSGDClassifier and MBSGDRegressor classes around SGD
- PR #705: Quasi Newton solver and LogisticRegression Python classes
- PR #670: Add test skipping functionality to build.sh
- PR #678: Random Forest Python class
- PR #684: prims: make_blobs primitive
- PR #673: prims: reduce cols by key primitive
- PR #812: Add cuML Communications API & consolidate Dask cuML
- PR #597: C++ cuML and ml-prims folder refactor
- PR #590: QN Recover from numeric errors
- PR #482: Introduce cumlHandle for pca and tsvd
- PR #573: Remove use of unnecessary cuDF column and series copies
- PR #601: Cython PEP8 cleanup and CI integration
- PR #596: Introduce cumlHandle for ols and ridge
- PR #579: Introduce cumlHandle for cd and sgd, and propagate C++ errors in cython level for cd and sgd
- PR #604: Adding cumlHandle to kNN, spectral methods, and UMAP
- PR #616: Enable clang-format for enforcing coding style
- PR #618: CI: Enable copyright header checks
- PR #622: Updated to use 0.8 dependencies
- PR #626: Added build.sh script, updated CI scripts and documentation
- PR #633: build: Auto-detection of GPU_ARCHS during cmake
- PR #650: Moving brute force kNN to prims. Creating stateless kNN API.
- PR #662: C++: Bulk clang-format updates
- PR #671: Added pickle pytests and correct pickling of Base class
- PR #675: atomicMin/Max(float, double) with integer atomics and bit flipping
- PR #677: build: 'deep-clean' to build.sh to clean faiss build as well
- PR #683: Use stateless c++ API in KNN so that it can be pickled properly
- PR #686: Use stateless c++ API in UMAP so that it can be pickled properly
- PR #695: prims: Refactor pairwise distance
- PR #707: Added stress test and updated documentation for RF
- PR #701: Added emacs temporary file patterns to .gitignore
- PR #606: C++: Added tests for host_buffer and improved device_buffer and host_buffer implementation
- PR #726: Updated RF docs and stress test
- PR #730: Update README and RF docs for 0.8
- PR #744: Random projections generating binomial on device. Fixing tests.
- PR #741: Update API docs for 0.8
- PR #754: Pickling of UMAP/KNN
- PR #753: Made PCA and TSVD picklable
- PR #746: LogisticRegression and QN API docstrings
- PR #820: Updating DEVELOPER GUIDE threading guidelines
- PR #584: Added missing virtual destructor to deviceAllocator and hostAllocator
- PR #620: C++: Removed old unit-test files in ml-prims
- PR #627: C++: Fixed dbscan crash issue filed in 613
- PR #640: Remove setuptools from conda run dependency
- PR #646: Update link in contributing.md
- PR #649: Bug fix to LinAlg::reduce_rows_by_key prim filed in issue #648
- PR #666: fixes to gitutils.py to resolve both string decode and handling of uncommitted files
- PR #676: Fix template parameters in
bernoulli()
implementation. - PR #685: Make CuPy optional to avoid nccl conda package conflicts
- PR #687: prims: updated tolerance for reduce_cols_by_key unit-tests
- PR #689: Removing extra prints from NearestNeighbors cython
- PR #718: Bug fix for DBSCAN and increasing batch size of sgd
- PR #719: Adding additional checks for dtype of the data
- PR #736: Bug fix for RF wrapper and .cu print function
- PR #547: Fixed issue if C++ compiler is specified via CXX during configure.
- PR #759: Configure Sphinx to render params correctly
- PR #762: Apply threshold to remove flakiness of UMAP tests.
- PR #768: Fixing memory bug from stateless refactor
- PR #782: Nearest neighbors checking properly whether memory should be freed
- PR #783: UMAP was using wrong size for knn computation
- PR #776: Hotfix for self.variables in RF
- PR #777: Fix numpy input bug
- PR #784: Fix jit of shuffle_idx python function
- PR #790: Fix rows_sample input type for RF
- PR #793: Fix for dtype conversion utility for numba arrays without cupy installed
- PR #806: Add a seed for sklearn model in RF test file
- PR #843: Rf quantile fix
- PR #405: Quasi-Newton GLM Solvers
- PR #277: Add row- and column-wise weighted mean primitive
- PR #424: Add a grid-sync struct for inter-block synchronization
- PR #430: Add R-Squared Score to ml primitives
- PR #463: Add matrix gather to ml primitives
- PR #435: Expose cumlhandle in cython + developer guide
- PR #455: Remove default-stream arguement across ml-prims and cuML
- PR #375: cuml cpp shared library renamed to libcuml++.so
- PR #460: Random Forest & Decision Trees (Single-GPU, Classification)
- PR #491: Add doxygen build target for ml-prims
- PR #505: Add R-Squared Score to python interface
- PR #507: Add coordinate descent for lasso and elastic-net
- PR #511: Add a minmax ml-prim
- PR #516: Added Trustworthiness score feature
- PR #520: Add local build script to mimic gpuCI
- PR #503: Add column-wise matrix sort primitive
- PR #525: Add docs build script to cuML
- PR #528: Remove current KMeans and replace it with a new single GPU implementation built using ML primitives
- PR #481: Refactoring Quasi-Newton to use cumlHandle
- PR #467: Added validity check on cumlHandle_t
- PR #461: Rewrote permute and added column major version
- PR #440: README updates
- PR #295: Improve build-time and the interface e.g., enable bool-OutType, for distance()
- PR #390: Update docs version
- PR #272: Add stream parameters to cublas and cusolver wrapper functions
- PR #447: Added building and running mlprims tests to CI
- PR #445: Lower dbscan memory usage by computing adjacency matrix directly
- PR #431: Add support for fancy iterator input types to LinAlg::reduce_rows_by_key
- PR #394: Introducing cumlHandle API to dbscan and add example
- PR #500: Added CI check for black listed CUDA Runtime API calls
- PR #475: exposing cumlHandle for dbscan from python-side
- PR #395: Edited the CONTRIBUTING.md file
- PR #407: Test files to run stress, correctness and unit tests for cuml algos
- PR #512: generic copy method for copying buffers between device/host
- PR #533: Add cudatoolkit conda dependency
- PR #524: Use cmake find blas and find lapack to pass configure options to faiss
- PR #527: Added notes on UMAP differences from reference implementation
- PR #540: Use latest release version in update-version CI script
- PR #552: Re-enable assert in kmeans tests with xfail as needed
- PR #581: Add shared memory fast col major to row major function back with bound checks
- PR #592: More efficient matrix copy/reverse methods
- PR #721: Added pickle tests for DBSCAN and Random Projections
- PR #334: Fixed segfault in
ML::cumlHandle_impl::destroyResources
- PR #349: Developer guide clarifications for cumlHandle and cumlHandle_impl
- PR #398: Fix CI scripts to allow nightlies to be uploaded
- PR #399: Skip PCA tests to allow CI to run with driver 418
- PR #422: Issue in the PCA tests was solved and CI can run with driver 418
- PR #409: Add entry to gitmodules to ignore build artifacts
- PR #412: Fix for svdQR function in ml-prims
- PR #438: Code that depended on FAISS was building everytime.
- PR #358: Fixed an issue when switching streams on MLCommon::device_buffer and MLCommon::host_buffer
- PR #434: Fixing bug in CSR tests
- PR #443: Remove defaults channel from ci scripts
- PR #384: 64b index arithmetic updates to the kernels inside ml-prims
- PR #459: Fix for runtime library path of pip package
- PR #464: Fix for C++11 destructor warning in qn
- PR #466: Add support for column-major in LinAlg::*Norm methods
- PR #465: Fixing deadlock issue in GridSync due to consecutive sync calls
- PR #468: Fix dbscan example build failure
- PR #470: Fix resource leakage in Kalman filter python wrapper
- PR #473: Fix gather ml-prim test for change in rng uniform API
- PR #477: Fixes default stream initialization in cumlHandle
- PR #480: Replaced qn_fit() declaration with #include of file containing definition to fix linker error
- PR #495: Update cuDF and RMM versions in GPU ci test scripts
- PR #499: DEVELOPER_GUIDE.md: fixed links and clarified ML::detail::streamSyncer example
- PR #506: Re enable ml-prim tests in CI
- PR #508: Fix for an error with default argument in LinAlg::meanSquaredError
- PR #519: README.md Updates and adding BUILD.md back
- PR #526: Fix the issue of wrong results when fit and transform of PCA are called separately
- PR #531: Fixing missing arguments in updateDevice() for RF
- PR #543: Exposing dbscan batch size through cython API and fixing broken batching
- PR #551: Made use of ZLIB_LIBRARIES consistent between ml_test and ml_mg_test
- PR #557: Modified CI script to run cuML tests before building mlprims and removed lapack flag
- PR #578: Updated Readme.md to add lasso and elastic-net
- PR #580: Fixing cython garbage collection bug in KNN
- PR #577: Use find libz in prims cmake
- PR #594: fixed cuda-memcheck mean_center test failures
- PR #462 Runtime library path fix for cuML pip package
- PR #249: Single GPU Stochastic Gradient Descent for linear regression, logistic regression, and linear svm with L1, L2, and elastic-net penalties.
- PR #247: Added "proper" CUDA API to cuML
- PR #235: NearestNeighbors MG Support
- PR #261: UMAP Algorithm
- PR #290: NearestNeighbors numpy MG Support
- PR #303: Reusable spectral embedding / clustering
- PR #325: Initial support for single process multi-GPU OLS and tSVD
- PR #271: Initial support for hyperparameter optimization with dask for many models
- PR #144: Dockerfile update and docs for LinearRegression and Kalman Filter.
- PR #168: Add /ci/gpu/build.sh file to cuML
- PR #167: Integrating full-n-final ml-prims repo inside cuml
- PR #198: (ml-prims) Removal of *MG calls + fixed a bug in permute method
- PR #194: Added new ml-prims for supporting LASSO regression.
- PR #114: Building faiss C++ api into libcuml
- PR #64: Using FAISS C++ API in cuML and exposing bindings through cython
- PR #208: Issue ml-common-3: Math.h: swap thrust::for_each with binaryOp,unaryOp
- PR #224: Improve doc strings for readable rendering with readthedocs
- PR #209: Simplify README.md, move build instructions to BUILD.md
- PR #218: Fix RNG to use given seed and adjust RNG test tolerances.
- PR #225: Support for generating random integers
- PR #215: Refactored LinAlg::norm to Stats::rowNorm and added Stats::colNorm
- PR #234: Support for custom output type and passing index value to main_op in *Reduction kernels
- PR #230: Refactored the cuda_utils header
- PR #236: Refactored cuml python package structure to be more sklearn like
- PR #232: Added reduce_rows_by_key
- PR #246: Support for 2 vectors in the matrix vector operator
- PR #244: Fix for single GPU OLS and Ridge to support one column training data
- PR #271: Added get_params and set_params functions for linear and ridge regression
- PR #253: Fix for issue #250-reduce_rows_by_key failed memcheck for small nkeys
- PR #269: LinearRegression, Ridge Python docs update and cleaning
- PR #322: set_params updated
- PR #237: Update build instructions
- PR #275: Kmeans use of faster gpu_matrix
- PR #288: Add n_neighbors to NearestNeighbors constructor
- PR #302: Added FutureWarning for deprecation of current kmeans algorithm
- PR #312: Last minute cleanup before release
- PR #315: Documentation updating and enhancements
- PR #330: Added ignored argument to pca.fit_transform to map to sklearn's implemenation
- PR #342: Change default ABI to ON
- PR #572: Pulling DBSCAN components into reusable primitives
- PR #193: Fix AttributeError in PCA and TSVD
- PR #211: Fixing inconsistent use of proper batch size calculation in DBSCAN
- PR #202: Adding back ability for users to define their own BLAS
- PR #201: Pass CMAKE CUDA path to faiss/configure script
- PR #200 Avoid using numpy via cimport in KNN
- PR #228: Bug fix: LinAlg::unaryOp with 0-length input
- PR #279: Removing faiss-gpu references in README
- PR #321: Fix release script typo
- PR #327: Update conda requirements for version 0.6 requirements
- PR #352: Correctly calculating numpy chunk sizing for kNN
- PR #345: Run python import as part of package build to trigger compilation
- PR #347: Lowering memory usage of kNN.
- PR #355: Fixing issues with very large numpy inputs to SPMG OLS and tSVD.
- PR #357: Removing FAISS requirement from README
- PR #362: Fix for matVecOp crashing on large input sizes
- PR #366: Index arithmetic issue fix with TxN_t class
- PR #376: Disabled kmeans tests since they are currently too sensitive (see #71)
- PR #380: Allow arbitrary data size on ingress for numba_utils.row_matrix
- PR #385: Fix for long import cuml time in containers and fix for setup_pip
- PR #630: Fixing a missing kneighbors in nearest neighbors python proxy
- PR #189 Avoid using numpy via cimport to prevent ABI issues in Cython compilation
- PR #66: OLS Linear Regression
- PR #44: Distance calculation ML primitives
- PR #69: Ridge (L2 Regularized) Linear Regression
- PR #103: Linear Kalman Filter
- PR #117: Pip install support
- PR #64: Device to device support from cuML device pointers into FAISS
- PR #56: Make OpenMP optional for building
- PR #67: Github issue templates
- PR #44: Refactored DBSCAN to use ML primitives
- PR #91: Pytest cleanup and sklearn toyset datasets based pytests for kmeans and dbscan
- PR #75: C++ example to use kmeans
- PR #117: Use cmake extension to find any zlib installed in system
- PR #94: Add cmake flag to set ABI compatibility
- PR #139: Move thirdparty submodules to root and add symlinks to new locations
- PR #151: Replace TravisCI testing and conda pkg builds with gpuCI
- PR #164: Add numba kernel for faster column to row major transform
- PR #114: Adding FAISS to cuml build
- PR #48: CUDA 10 compilation warnings fix
- PR #51: Fixes to Dockerfile and docs for new build system
- PR #72: Fixes for GCC 7
- PR #96: Fix for kmeans stack overflow with high number of clusters
- PR #105: Fix for AttributeError in kmeans fit method
- PR #113: Removed old glm python/cython files
- PR #118: Fix for AttributeError in kmeans predict method
- PR #125: Remove randomized solver option from PCA python bindings
- PR #42: New build system: separation of libcuml.so and cuml python package
- PR #43: Added changelog.md
- PR #33: Added ability to call cuML algorithms using numpy arrays
- PR #24: Fix references of python package from cuML to cuml and start using versioneer for better versioning
- PR #40: Added support for refactored cuDF 0.3.0, updated Conda files
- PR #33: Major python test cleaning, all tests pass with cuDF 0.2.0 and 0.3.0. Preparation for new build system
- PR #34: Updated batch count calculation logic in DBSCAN
- PR #35: Beginning of DBSCAN refactor to use cuML mlprims and general improvements
- PR #30: Fixed batch size bug in DBSCAN that caused crash. Also fixed various locations for potential integer overflows
- PR #28: Fix readthedocs build documentation
- PR #29: Fix pytests for cuml name change from cuML
- PR #33: Fixed memory bug that would cause segmentation faults due to numba releasing memory before it was used. Also fixed row major/column major bugs for different algorithms
- PR #36: Fix kmeans gtest to use device data
- PR #38: cuda_free bug removed that caused google tests to sometimes pass and sometimes fail randomly
- PR #39: Updated cmake to correctly link with CUDA libraries, add CUDA runtime linking and include source files in compile target
- PR #11: Kmeans algorithm added
- PR #7: FAISS KNN wrapper added
- PR #21: Added Conda install support
- PR #15: Added compatibility with cuDF (from prior pyGDF)
- PR #13: Added FAISS to Dockerfile
- PR #21: Added TravisCI build system for CI and Conda builds
- PR #4: Fixed explained variance bug in TSVD
- PR #5: Notebook bug fixes and updated results
Initial release including PCA, TSVD, DBSCAN, ml-prims and cython wrappers