-
Notifications
You must be signed in to change notification settings - Fork 1
/
half.hpp
1417 lines (1240 loc) · 39.2 KB
/
half.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
//---------------------------------------------------------------------------//
//
// halp.hpp
// ヘッダファイルだけで使える半精度浮動小数点数 (C++14)
// Portable implementation of IEEE 754 half-precision floating-point format
// Copyright (C) tapetums 2015-2017
//
//---------------------------------------------------------------------------//
//
// Copyright (c) 2006, Industrial Light & Magic, a division of Lucasfilm
// Entertainment Company Ltd. Portions contributed and copyright held by
// others as indicated. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above
// copyright notice, this list of conditions and the following
// disclaimer.
//
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided with
// the distribution.
//
// * Neither the name of Industrial Light & Magic nor the names of
// any other contributors to this software may be used to endorse or
// promote products derived from this software without specific prior
// written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//---------------------------------------------------------------------------//
// Primary authors:
// Florian Kainz <[email protected]>
// Rod Bogart <[email protected]>
//
// Modification for portable implementation:
// tapetums <[email protected]>
//---------------------------------------------------------------------------//
#ifndef _HALF_H_
#define _HALF_H_
#include <cstdint>
#include <cmath>
#include <iostream>
#include <limits>
//---------------------------------------------------------------------------//
// Forward Declarations
//---------------------------------------------------------------------------//
namespace IEEE754
{
class half;
using float16_t = half;
using float32_t = float;
using float64_t = double;
inline half operator +(half a, half b);
inline half operator +(float32_t a, half b);
inline half operator +(half a, float32_t b);
inline half operator -(half a, half b);
inline half operator -(float32_t a, half b);
inline half operator -(half a, float32_t b);
inline half operator *(half a, half b);
inline half operator *(float32_t a, half b);
inline half operator *(half a, float32_t b);
inline half operator /(half a, half b);
inline half operator /(float32_t a, half b);
inline half operator /(half a, float32_t b);
inline bool operator ==(half a, half b);
inline bool operator ==(float32_t a, half b);
inline bool operator ==(half a, float32_t b);
inline bool operator !=(half a, half b);
inline bool operator !=(float32_t a, half b);
inline bool operator !=(half a, float32_t b);
inline bool operator <=(half a, half b);
inline bool operator <=(float32_t a, half b);
inline bool operator <=(half a, float32_t b);
inline bool operator >=(half a, half b);
inline bool operator >=(float32_t a, half b);
inline bool operator >=(half a, float32_t b);
inline bool operator < (half a, half b);
inline bool operator < (float32_t a, half b);
inline bool operator < (half a, float32_t b);
inline bool operator > (half a, half b);
inline bool operator > (float32_t a, half b);
inline bool operator > (half a, float32_t b);
template<typename C>
std::basic_ostream<C>& operator <<(std::basic_ostream<C>& stream, half lhs);
template<typename C>
std::basic_istream<C>& operator >>(std::basic_istream<C>& stream, half& lhs);
}
//---------------------------------------------------------------------------//
// Utility Functions
//---------------------------------------------------------------------------//
namespace
{
inline constexpr bool is_zero(IEEE754::float32_t f) noexcept
{
return f == +0.0 || f == -0.0;
}
inline constexpr bool is_pos_inf(IEEE754::float32_t f) noexcept
{
return f == +std::numeric_limits<IEEE754::float32_t>::infinity();
}
inline constexpr bool is_neg_inf(IEEE754::float32_t f) noexcept
{
return f == -std::numeric_limits<IEEE754::float32_t>::infinity();
}
}
//---------------------------------------------------------------------------//
// Class
//---------------------------------------------------------------------------//
class IEEE754::half
{
public: // limits
static constexpr float32_t NRM_MIN = 6.10351562e-05; // Smallest positive normalized half
static constexpr float32_t MIN = 5.96046448e-08; // Smallest positive half
static constexpr float32_t MAX = 65504.0; // Largest positive half
static constexpr float32_t EPSILON = 0.00097656; // Smallest positive e for which
static constexpr auto MANT_DIG = 11; // Number of digits in mantissa
// (significand + hidden leading 1)
static constexpr auto DIG = 2; // Number of base 10 digits that
// can be represented without change
static constexpr auto RADIX = 2; // Base of the exponent
static constexpr auto MIN_EXP = -13; // Minimum negative integer such that
// HALF::RADIX raised to the power of
// one less than that integer is a
// normalized half
static constexpr auto MAX_EXP = 16; // Maximum positive integer such that
// HALF::RADIX raised to the power of
// one less than that integer is a
// normalized half
static constexpr auto MIN_10_EXP = -4; // Minimum positive integer such
// that 10 raised to that power is
// a normalized half
static constexpr auto MAX_10_EXP = 4; // Maximum positive integer such
// that 10 raised to that power is
// a normalized half
private: // types
union uif
{
int32_t i;
float32_t f;
constexpr uif() noexcept : i(0) {}
constexpr explicit uif(int32_t i) noexcept : i(i) {}
constexpr explicit uif(float32_t f) noexcept : f(f) {}
};
private: // members
uint16_t data;
public: // ctor / dtor
constexpr half() noexcept : data(0) {}
constexpr half(const half&) noexcept = default;
constexpr half& operator=(const half&) noexcept = default;
constexpr half(half&&) noexcept = default;
constexpr half& operator=(half&&) noexcept = default;
explicit half(float32_t f) noexcept { operator =(f); }
~half() = default;
public: // operators
constexpr half& operator +() noexcept { return *this; }
constexpr half operator -() const noexcept { half h; h.data = data ^ 0x8000; return h; }
constexpr operator float32_t() const noexcept;
half& operator =(float32_t) noexcept;
constexpr half& operator +=(half);
constexpr half& operator +=(float32_t);
constexpr half& operator -=(half);
constexpr half& operator -=(float32_t);
constexpr half& operator *=(half);
constexpr half& operator *=(float32_t);
constexpr half& operator /=(half);
constexpr half& operator /=(float32_t);
public: // methods
constexpr half round(uint8_t digits) const noexcept;
public: // properties
constexpr bool is_finite() const noexcept;
constexpr bool is_normalized() const noexcept;
constexpr bool is_denormalized() const noexcept;
constexpr bool is_zero() const noexcept;
constexpr bool is_negative() const noexcept;
constexpr bool is_infinity() const noexcept;
constexpr bool is_pos_inf() const noexcept;
constexpr bool is_neg_inf() const noexcept;
constexpr bool is_NaN() const noexcept;
public: // constant objects
static constexpr half infinity() noexcept { half h; h.data = 0x7C00; return h; }
static constexpr half pos_inf() noexcept { return +half::infinity(); }
static constexpr half neg_inf() noexcept { return -half::infinity(); }
static constexpr half qNaN() noexcept { half h; h.data = 0x7FFF; return h; }
static constexpr half sNaN() noexcept { half h; h.data = 0x7DFF; return h; }
static constexpr half NaN() noexcept { return half::qNaN(); }
public: // accessors
constexpr uint16_t bits() const noexcept { return data; }
constexpr half& bits(uint16_t bits) noexcept { data = bits; return *this; }
private: // internal methods
static uint16_t convert(int32_t) noexcept;
static float32_t overflow() noexcept;
};
//---------------------------------------------------------------------------//
//
// Implementation --
//
// Representation of a float:
//
// We assume that a float, f, is an IEEE 754 single-precision
// floating point number, whose bits are arranged as follows:
//
// 31 (msb)
// |
// | 30 23
// | | |
// | | | 22 0 (lsb)
// | | | | |
// X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
//
// s e m
//
// S is the sign-bit, e is the exponent and m is the significand.
//
// If e is between 1 and 254, f is a normalized number:
//
// s e-127
// f = (-1) * 2 * 1.m
//
// If e is 0, and m is not zero, f is a denormalized number:
//
// s -126
// f = (-1) * 2 * 0.m
//
// If e and m are both zero, f is zero:
//
// f = 0.0
//
// If e is 255, f is an "infinity" or "not a number" (NAN),
// depending on whether m is zero or not.
//
// Examples:
//
// 0 00000000 00000000000000000000000 = 0.0
// 0 01111110 00000000000000000000000 = 0.5
// 0 01111111 00000000000000000000000 = 1.0
// 0 10000000 00000000000000000000000 = 2.0
// 0 10000000 10000000000000000000000 = 3.0
// 1 10000101 11110000010000000000000 = -124.0625
// 0 11111111 00000000000000000000000 = +infinity
// 1 11111111 00000000000000000000000 = -infinity
// 0 11111111 10000000000000000000000 = NAN
// 1 11111111 11111111111111111111111 = NAN
//
// Representation of a half:
//
// Here is the bit-layout for a half number, h:
//
// 15 (msb)
// |
// | 14 10
// | | |
// | | | 9 0 (lsb)
// | | | | |
// X XXXXX XXXXXXXXXX
//
// s e m
//
// S is the sign-bit, e is the exponent and m is the significand.
//
// If e is between 1 and 30, h is a normalized number:
//
// s e-15
// h = (-1) * 2 * 1.m
//
// If e is 0, and m is not zero, h is a denormalized number:
//
// S -14
// h = (-1) * 2 * 0.m
//
// If e and m are both zero, h is zero:
//
// h = 0.0
//
// If e is 31, h is an "infinity" or "not a number" (NAN),
// depending on whether m is zero or not.
//
// Examples:
//
// 0 00000 0000000000 = 0.0
// 0 01110 0000000000 = 0.5
// 0 01111 0000000000 = 1.0
// 0 10000 0000000000 = 2.0
// 0 10000 1000000000 = 3.0
// 1 10101 1111000001 = -124.0625
// 0 11111 0000000000 = +infinity
// 1 11111 0000000000 = -infinity
// 0 11111 1000000000 = NAN
// 1 11111 1111111111 = NAN
//
// Conversion:
//
// Converting from a float to a half requires some non-trivial bit
// manipulations. In some cases, this makes conversion relatively
// slow, but the most common case is accelerated via table lookups.
//
// Converting back from a half to a float is easier because we don't
// have to do any rounding. In addition, there are only 65536
// different half numbers; we can convert each of those numbers once
// and store the results in a table. Later, all conversions can be
// done using only simple table lookups.
//
// <NOTE>
// tapetums <[email protected]> removed table lookup features.
// This change caused a drop of the speed
// in exchange for improvement of the portability.
//
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
// Operators
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half::operator float32_t() const noexcept
{
if ( data == 0x0000 )
{
return 0.0;
}
else if ( data == 0x8000 )
{
return -0.0;
}
const auto s = (data << 16) & 0x8000'0000;
const auto e = ((data >> 10) & 0x0000'001F) + (127 - 15);
const auto m = data & 0x0000'03FF;
uif tmp;
tmp.i = s | (e << 23) | (m << (23 - 10));
return tmp.f;
}
//---------------------------------------------------------------------------//
inline IEEE754::half& IEEE754::half::operator =(float32_t f) noexcept
{
uif tmp { f };
if ( ::is_zero(f) )
{
// Common special case - zero.
// Preserve the zero's sign bit.
data = (tmp.i >> 16);
}
else
{
const auto s = (tmp.i >> 16) & 0x0000'8000;
const auto e = ((tmp.i >> 23) & 0x0000'00FF) - (127 - 15);
const auto m = tmp.i & 0x007F'FFFF;
if ( 0 < e && e < 31 )
{
// Simple case - round the significand, m, to 10
// bits and combine it with the sign and exponent.
data = s | (e << 10) | (m >> (23 - 10));
}
else
{
// Difficult case - call a function.
data = convert(tmp.i); // too small
}
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator +=(half h)
{
//std::cout << "[op+=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( h.is_NaN() )
{
data = h.data; // Propagate NaN.
}
else if ( is_pos_inf() && h.is_neg_inf() )
{
data = NaN().bits(); // +∞ + -∞ : undefined
}
else if ( is_neg_inf() && h.is_pos_inf() )
{
data = NaN().bits(); // -∞ + +∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) + static_cast<float32_t>(h));
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator +=(float32_t f)
{
//std::cout << "[op+=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( ::isnan(f) )
{
data = NaN().bits(); // Propagate NaN.
}
else if ( is_pos_inf() && ::is_neg_inf(f) )
{
data = NaN().bits(); // +∞ + -∞ : undefined
}
else if ( is_neg_inf() && ::is_pos_inf(f) )
{
data = NaN().bits(); // -∞ + +∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) + f);
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator -=(half h)
{
//std::cout << "[op-=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( h.is_NaN() )
{
data = h.data; // Propagate NaN.
}
else if ( is_pos_inf() && h.is_pos_inf() )
{
data = NaN().bits(); // +∞ - +∞ : undefined
}
else if ( is_neg_inf() && h.is_neg_inf() )
{
data = NaN().bits(); // -∞ - -∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) - static_cast<float32_t>(h));
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator -=(float32_t f)
{
//std::cout << "[op-=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( ::isnan(f) )
{
data = NaN().bits(); // Propagate NaN.
}
else if ( is_pos_inf() && ::is_pos_inf(f) )
{
data = NaN().bits(); // +∞ - +∞ : undefined
}
else if ( is_neg_inf() && ::is_neg_inf(f) )
{
data = NaN().bits(); // -∞ - -∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) - f);
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator *=(half h)
{
//std::cout << "[op*=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( h.is_NaN() )
{
data = h.data; // Propagate NaN.
}
else if ( is_infinity() && h.is_zero() )
{
data = NaN().bits(); // ±∞ * ±0 : undefined
}
else if ( is_zero() && h.is_infinity() )
{
data = NaN().bits(); // ±0 * ±∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) * static_cast<float32_t>(h));
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator *=(float32_t f)
{
//std::cout << "[op*=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( ::isnan(f) )
{
data = NaN().bits(); // Propagate NaN.
}
else if ( is_infinity() && ::is_zero(f) )
{
data = NaN().bits(); // ±∞ * ±0 : undefined
}
else if ( is_zero() && ::isinf(f) )
{
data = NaN().bits(); // ±0 * ±∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) * f);
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator /=(half h)
{
//std::cout << "[op/=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( h.is_NaN() )
{
data = h.data; // Propagate NaN.
}
else if ( is_zero() && h.is_zero() )
{
data = NaN().bits(); // ±0 ÷ ±0 : undefined
}
else if ( is_infinity() && h.is_infinity() )
{
data = NaN().bits(); // ±∞ ÷ ±∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) / static_cast<float32_t>(h));
}
return *this;
}
//---------------------------------------------------------------------------//
inline constexpr IEEE754::half& IEEE754::half::operator /=(float32_t f)
{
//std::cout << "[op/=()]" << '\n';
if ( is_NaN() )
{
// Return NaN.
}
else if ( ::isnan(f) )
{
data = NaN().bits(); // Propagate NaN.
}
else if ( is_zero() && ::is_zero(f) )
{
data = NaN().bits(); // ±0 ÷ ±0 : undefined
}
else if ( is_infinity() && ::isinf(f) )
{
data = NaN().bits(); // ±∞ ÷ ±∞ : undefined
}
else
{
operator=(static_cast<float32_t>(*this) / f);
}
return *this;
}
//---------------------------------------------------------------------------//
// Methods
//---------------------------------------------------------------------------//
//---------------------------------------------------------
// Round to n-bit precision (n should be between 0 and 10).
// After rounding, the significand's 10-n least significant
// bits will be zero.
//---------------------------------------------------------
inline constexpr IEEE754::half IEEE754::half::round(uint8_t n) const noexcept
{
//std::cout << "[round()]" << '\n';
// Parameter check.
if ( n >= 10 ) { return *this; }
// Disassemble h into the sign, s,
// and the combined exponent and significand, e.
auto s = data & 0x8000;
auto e = data & 0x7FFF;
// Round the exponent and significand to the nearest value
// where ones occur only in the (10-n) most significant bits.
// Note that the exponent adjusts automatically if rounding
// up causes the significand to overflow.
e >>= 9 - n;
e += e & 1;
e <<= 9 - n;
// Check for exponent overflow.
if ( e >= 0x7C00 )
{
// Overflow occurred -- truncate instead of rounding.
e = data;
e >>= 10 - n;
e <<= 10 - n;
}
// Put the original sign bit back.
half h;
h.data = s | e;
return h;
}
//---------------------------------------------------------------------------//
// Properties
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_finite() const noexcept
{
const auto e = (data >> 10) & 0x001F;
return e < 31;
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_normalized() const noexcept
{
const auto e = (data >> 10) & 0x001F;
return e > 0 && e < 31;
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_denormalized() const noexcept
{
const auto e = (data >> 10) & 0x001F;
const auto m = data & 0x03FF;
return e == 0 && m != 0;
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_zero() const noexcept
{
return (data & 0x7FFF) == 0;
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_negative() const noexcept
{
return (data & 0x8000) != 0;
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_infinity() const noexcept
{
const auto e = (data >> 10) & 0x001F;
const auto m = data & 0x03FF;
return e == 31 && m == 0;
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_pos_inf() const noexcept
{
return data == pos_inf().bits();
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_neg_inf() const noexcept
{
return data == neg_inf().bits();
}
//---------------------------------------------------------------------------//
inline constexpr bool IEEE754::half::is_NaN() const noexcept
{
const auto e = (data >> 10) & 0x001F;
const auto m = data & 0x03FF;
return e == 31 && m != 0;
}
//---------------------------------------------------------------------------//
// Internal Methods
//---------------------------------------------------------------------------//
inline uint16_t IEEE754::half::convert(int32_t i) noexcept
{
//std::cout << "[convert()]" << '\n';
auto s = (i >> 16) & 0x0000'8000;
auto e = ((i >> 23) & 0x0000'00FF) - (127 - 15);
auto m = i & 0x007F'FFFF;
// Now reassemble s, e and m into a half:
if ( e <= 0 )
{
if ( e < -10 )
{
// E is less than -10. The absolute value of f is
// less than HALF::MIN (f may be a small normalized
// float, a denormalized float or a zero).
// We convert f to a half zero with the same sign as f.
return s;
}
// E is between -10 and 0. F is a normalized float
// whose magnitude is less than HALF::NRM_MIN.
// We convert f to a denormalized half.
// Add an explicit leading 1 to the significand.
m = m | 0x00800000;
// Round to m to the nearest (10+e)-bit value (with e between
// -10 and 0); in case of a tie, round to the nearest even value.
// Rounding may cause the significand to overflow and make
// our number normalized. Because of the way a half's bits
// are laid out, we don't have to treat this case separately;
// the code below will handle it correctly.
const auto t = 14 - e;
const auto a = (1 << (t - 1)) - 1;
const auto b = (m >> t) & 1;
m = (m + a + b) >> t;
// Assemble the half from s, e (zero) and m.
return s | m;
}
else if ( e == 0xFF - (127 - 15) )
{
if ( m == 0 )
{
// F is an infinity; convert f to a half
// infinity with the same sign as f.
return s | 0x7C00;
}
else
{
// F is a NAN; we produce a half NAN that preserves
// the sign bit and the 10 leftmost bits of the
// significand of f, with one exception: If the 10
// leftmost bits are all zero, the NAN would turn
// into an infinity, so we have to set at least one
// bit in the significand.
m >>= 13;
return s | 0x7C00 | m | (m == 0);
}
}
else
{
// E is greater than zero. F is a normalized float.
// We try to convert f to a normalized half.
// Round to m to the nearest 10-bit value. In case of
// a tie, round to the nearest even value.
m = m + 0x00000FFF + ((m >> 13) & 1);
if (m & 0x00800000)
{
m = 0; // overflow in significand,
e += 1; // adjust exponent
}
// Handle exponent overflow
if ( e > 30 )
{
overflow(); // Cause a hardware floating point overflow;
return s | 0x7C00; // if this returns, the half becomes an
} // infinity with the same sign as f.
// Assemble the half from s, e and m.
return s | (e << 10) | (m >> (23 - 10));
}
}
//---------------------------------------------------------------------------//
inline IEEE754::float32_t IEEE754::half::overflow() noexcept
{
volatile float32_t f { 1e10 };
for ( auto i = 0; i < 10; ++i )
{
f *= f; // this will overflow before the forloop terminates
}
return f;
}
//---------------------------------------------------------------------------//
// Global Operators
//---------------------------------------------------------------------------//
inline IEEE754::half IEEE754::operator +(half a, half b)
{
//std::cout << "[op+()]" << '\n';
if ( a.is_NaN() || b.is_NaN() )
{
return half::NaN();
}
else if ( a.is_pos_inf() && b.is_neg_inf() )
{
return half::NaN(); // +∞ + -∞ : undefined
}
else if ( a.is_neg_inf() && b.is_pos_inf() )
{
return half::NaN(); // -∞ + +∞ : undefined
}
else
{
return half { static_cast<float32_t>(a) + static_cast<float32_t>(b) };
}
}
//---------------------------------------------------------------------------//
inline IEEE754::half IEEE754::operator +(float32_t a, half b)
{
//std::cout << "[op+()]" << '\n';
if ( ::isnan(a) || b.is_NaN() )
{
return half::NaN();
}
else if ( is_pos_inf(a) && b.is_neg_inf() )
{
return half::NaN(); // +∞ + -∞ : undefined
}
else if ( is_neg_inf(a) && b.is_pos_inf() )
{
return half::NaN(); // -∞ + +∞ : undefined
}
else
{
return half { a + static_cast<float32_t>(b) };
}
}
//---------------------------------------------------------------------------//
inline IEEE754::half IEEE754::operator +(half a, float32_t b)
{
//std::cout << "[op+()]" << '\n';
if ( a.is_NaN() || ::isnan(b) )
{
return half::NaN();
}
else if ( a.is_pos_inf() && is_neg_inf(b) )
{
return half::NaN(); // +∞ + -∞ : undefined
}
else if ( a.is_neg_inf() && is_pos_inf(b) )
{
return half::NaN(); // -∞ + +∞ : undefined
}
else
{
return half { static_cast<float32_t>(a) + b };
}
}
//---------------------------------------------------------------------------//
inline IEEE754::half IEEE754::operator -(half a, half b)
{
//std::cout << "[op-()]" << '\n';
if ( a.is_NaN() || b.is_NaN() )
{
return half::NaN();
}
else if ( a.is_pos_inf() && b.is_pos_inf() )
{
return half::NaN(); // +∞ - +∞ : undefined
}
else if ( a.is_neg_inf() && b.is_neg_inf() )
{
return half::NaN(); // -∞ - -∞ : undefined
}
else
{
return half { static_cast<float32_t>(a) - static_cast<float32_t>(b) };
}
}
//---------------------------------------------------------------------------//
inline IEEE754::half IEEE754::operator -(float32_t a, half b)
{
//std::cout << "[op-()]" << '\n';
if ( ::isnan(a) || b.is_NaN() )
{
return half::NaN();
}
else if ( is_pos_inf(a) && b.is_pos_inf() )
{
return half::NaN(); // +∞ - +∞ : undefined
}
else if ( is_neg_inf(a) && b.is_neg_inf() )
{
return half::NaN(); // -∞ - -∞ : undefined
}
else
{
return half { a - static_cast<float32_t>(b) };
}
}
//---------------------------------------------------------------------------//
inline IEEE754::half IEEE754::operator -(half a, float32_t b)
{
//std::cout << "[op-()]" << '\n';
if ( a.is_NaN() || ::isnan(b) )
{
return half::NaN();
}
else if ( a.is_pos_inf() && is_pos_inf(b) )
{