-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathCalibImage.cc
635 lines (548 loc) · 18 KB
/
CalibImage.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
// Copyright 2008 Isis Innovation Limited
#include "OpenGL.h"
#include "CalibImage.h"
#include <stdlib.h>
#include <gvars3/instances.h>
#include <cvd/utility.h>
#include <cvd/convolution.h>
#include <cvd/fast_corner.h>
#include <cvd/vector_image_ref.h>
#include <cvd/image_interpolate.h>
#include <TooN/se3.h>
#include <TooN/SVD.h>
#include <TooN/wls.h>
namespace PTAMM {
using namespace std;
using namespace CVD;
using namespace GVars3;
inline bool IsCorner(Image<CVD::byte> &im, ImageRef ir, int nGate)
{ // Does a quick check to see if a point in an image could be a grid corner.
// Does this by going around a 16-pixel ring, and checking that there's four
// transitions (black - white- black - white - )
// Also checks that the central pixel is blurred.
// Find the mean intensity of the pixel ring...
int nSum = 0;
static byte abPixels[16];
for(int i=0; i<16; i++)
{
abPixels[i] = im[ir + fast_pixel_ring[i]];
nSum += abPixels[i];
};
int nMean = nSum / 16;
int nHiThresh = nMean + nGate;
int nLoThresh = nMean - nGate;
// If the center pixel is roughly the same as the mean, this isn't a corner.
int nCenter = im[ir];
if(nCenter <= nLoThresh || nCenter >= nHiThresh)
return false;
// Count transitions around the ring... there should be four!
bool bState = (abPixels[15] > nMean);
int nSwaps = 0;
for(int i=0; i<16; i++)
{
byte bValNow = abPixels[i];
if(bState)
{
if(bValNow < nLoThresh)
{
bState = false;
nSwaps++;
}
}
else
if(bValNow > nHiThresh)
{
bState = true;
nSwaps++;
};
}
return (nSwaps == 4);
};
Vector<2> GuessInitialAngles(Image<CVD::byte> &im, ImageRef irCenter)
{
// The iterative patch-finder works better if the initial guess
// is roughly aligned! Find one of the line-axes by searching round
// the circle for the strongest gradient, and use that and +90deg as the
// initial guesses for patch angle.
//
// Yes, this is a very poor estimate, but it's generally (hopefully?)
// enough for the iterative finder to converge.
image_interpolate<Interpolate::Bilinear, byte> imInterp(im);
double dBestAngle = 0;
double dBestGradMag = 0;
double dGradAtBest = 0;
for(double dAngle = 0.0; dAngle < M_PI; dAngle += 0.1)
{
Vector<2> v2Dirn;
v2Dirn[0] = cos(dAngle); v2Dirn[1] = sin(dAngle);
Vector<2> v2Perp;
v2Perp[1] = -v2Dirn[0]; v2Perp[0] = v2Dirn[1];
double dG = imInterp[vec(irCenter) + v2Dirn * 3.0 + v2Perp * 0.1] -
imInterp[vec(irCenter) + v2Dirn * 3.0 - v2Perp * 0.1]
+ imInterp[vec(irCenter) - v2Dirn * 3.0 - v2Perp * 0.1] -
imInterp[vec(irCenter) - v2Dirn * 3.0 + v2Perp * 0.1];
if(fabs(dG) > dBestGradMag)
{
dBestGradMag = fabs(dG);
dGradAtBest = dG;
dBestAngle = dAngle;
};
}
Vector<2> v2Ret;
if(dGradAtBest < 0)
{ v2Ret[0] = dBestAngle; v2Ret[1] = dBestAngle + M_PI / 2.0; }
else
{ v2Ret[1] = dBestAngle; v2Ret[0] = dBestAngle - M_PI / 2.0; }
return v2Ret;
}
bool CalibImage::MakeFromImage(Image<CVD::byte> &im)
{
static gvar3<int> gvnCornerPatchSize("CameraCalibrator.CornerPatchPixelSize", 20, SILENT);
mvCorners.clear();
mvGridCorners.clear();
mim = im;
mim.make_unique();
// Find potential corners..
// This works better on a blurred image, so make a blurred copy
// and run the corner finding on that.
{
Image<CVD::byte> imBlurred = mim;
imBlurred.make_unique();
convolveGaussian(imBlurred, GV2.GetDouble("CameraCalibrator.BlurSigma", 1.0, SILENT));
ImageRef irTopLeft(5,5);
ImageRef irBotRight = mim.size() - irTopLeft;
ImageRef ir = irTopLeft;
glPointSize(1);
glColor3f(1,0,1);
glBegin(GL_POINTS);
int nGate = GV2.GetInt("CameraCalibrator.MeanGate", 10, SILENT);
do
if(IsCorner(imBlurred, ir, nGate))
{
mvCorners.push_back(ir);
glVertex(ir);
}
while(ir.next(irTopLeft, irBotRight));
glEnd();
}
// If there's not enough corners, i.e. camera pointing somewhere random, abort.
if((int) mvCorners.size() < GV2.GetInt("CameraCalibrator.MinCornersForGrabbedImage", 20, SILENT))
return false;
// Pick a central corner point...
ImageRef irCenterOfImage = mim.size() / 2;
ImageRef irBestCenterPos;
unsigned int nBestDistSquared = 99999999;
for(unsigned int i=0; i<mvCorners.size(); i++)
{
unsigned int nDist = (mvCorners[i] - irCenterOfImage).mag_squared();
if(nDist < nBestDistSquared)
{
nBestDistSquared = nDist;
irBestCenterPos = mvCorners[i];
}
}
// ... and try to fit a corner-patch to that.
CalibCornerPatch Patch(*gvnCornerPatchSize);
CalibCornerPatch::Params Params;
Params.v2Pos = vec(irBestCenterPos);
Params.v2Angles = GuessInitialAngles(mim, irBestCenterPos);
Params.dGain = 80.0;
Params.dMean = 120.0;
if(!Patch.IterateOnImageWithDrawing(Params, mim))
return false;
// The first found corner patch becomes the origin of the detected grid.
CalibGridCorner cFirst;
cFirst.Params = Params;
mvGridCorners.push_back(cFirst);
cFirst.Draw();
// Next, go in two compass directions from the origin patch, and see if
// neighbors can be found.
if(!(ExpandByAngle(0,0) || ExpandByAngle(0,2)))
return false;
if(!(ExpandByAngle(0,1) || ExpandByAngle(0,3)))
return false;
mvGridCorners[1].mInheritedSteps = mvGridCorners[2].mInheritedSteps = mvGridCorners[0].GetSteps(mvGridCorners);
// The three initial grid elements are enough to find the rest of the grid.
int nNext;
int nSanityCounter = 0; // Stop it getting stuck in an infinite loop...
const int nSanityCounterLimit = 500;
while((nNext = NextToExpand()) >= 0 && nSanityCounter < nSanityCounterLimit )
{
ExpandByStep(nNext);
nSanityCounter++;
}
if(nSanityCounter == nSanityCounterLimit)
return false;
DrawImageGrid();
return true;
}
bool CalibImage::ExpandByAngle(int nSrc, int nDirn)
{
static gvar3<int> gvnCornerPatchSize("CameraCalibrator.CornerPatchPixelSize", 20, SILENT);
CalibGridCorner &gSrc = mvGridCorners[nSrc];
ImageRef irBest;
double dBestDist = 99999;
Vector<2> v2TargetDirn = gSrc.Params.m2Warp().T()[nDirn%2];
if(nDirn >= 2)
v2TargetDirn *= -1;
for(unsigned int i=0; i<mvCorners.size(); i++)
{
Vector<2> v2Diff = vec(mvCorners[i]) - gSrc.Params.v2Pos;
if( (v2Diff * v2Diff) < 100 )
continue;
if( (v2Diff * v2Diff) > (dBestDist * dBestDist) )
continue;
Vector<2> v2Dirn = v2Diff;
normalize(v2Dirn);
if( (v2Dirn * v2TargetDirn) < cos(M_PI / 18.0) )
continue;
dBestDist = sqrt(v2Diff * v2Diff);
irBest = mvCorners[i];
}
CalibGridCorner gTarget;
gTarget.Params = gSrc.Params;
gTarget.Params.v2Pos = vec(irBest);
gTarget.Params.dGain *= -1;
CalibCornerPatch Patch(*gvnCornerPatchSize);
if(!Patch.IterateOnImageWithDrawing(gTarget.Params, mim))
{
gSrc.aNeighborStates[nDirn].val = N_FAILED;
return false;
}
gTarget.irGridPos = gSrc.irGridPos;
if(nDirn < 2)
gTarget.irGridPos[nDirn]++;
else gTarget.irGridPos[nDirn%2]--;
// Update connection states:
mvGridCorners.push_back(gTarget); // n.b. This invalidates gSrc!
mvGridCorners.back().aNeighborStates[(nDirn + 2) % 4].val = nSrc;
mvGridCorners[nSrc].aNeighborStates[nDirn].val = static_cast<int>(mvGridCorners.size()) - 1;
mvGridCorners.back().Draw();
return true;
}
void CalibGridCorner::Draw()
{
glColor3f(0,1,0);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBegin(GL_LINES);
glVertex(Params.v2Pos + Params.m2Warp() * vec(ImageRef( 10,0)));
glVertex(Params.v2Pos + Params.m2Warp() * vec(ImageRef(-10,0)));
glVertex(Params.v2Pos + Params.m2Warp() * vec(ImageRef( 0, 10)));
glVertex(Params.v2Pos + Params.m2Warp() * vec(ImageRef( 0,-10)));
glEnd();
}
double CalibGridCorner::ExpansionPotential()
{
// Scoring function. How good would this grid corner be at finding a neighbor?
// The best case is if it's already surrounded by three neighbors and only needs
// to find the last one (because it'll have the most accurate guess for where
// the last one should be) and so on.
int nMissing = 0;
for(int i=0; i<4; i++)
if(aNeighborStates[i].val == N_NOT_TRIED)
nMissing++;
if(nMissing == 0)
return 0.0;
if(nMissing == 1)
return 100.0;
if(nMissing == 3)
return 1.0;
if(nMissing == 2)
{
int nFirst = 0;
while(aNeighborStates[nFirst].val != N_NOT_TRIED)
nFirst++;
if(aNeighborStates[(nFirst + 2) % 4].val == N_NOT_TRIED)
return 10.0;
else
return 20.0;
}
assert(0); // should never get here
return 0.0;
};
Matrix<2> CalibGridCorner::GetSteps(vector<CalibGridCorner> &vgc)
{
Matrix<2> m2Steps;
for(int dirn=0; dirn<2; dirn++)
{
Vector<2> v2Dirn;
int nFound = 0;
v2Dirn = Zeros;
if(aNeighborStates[dirn].val >=0)
{
v2Dirn += vgc[aNeighborStates[dirn].val].Params.v2Pos - Params.v2Pos;
nFound++;
}
if(aNeighborStates[dirn+2].val >=0)
{
v2Dirn -= vgc[aNeighborStates[dirn+2].val].Params.v2Pos - Params.v2Pos;
nFound++;
}
if(nFound == 0)
m2Steps[dirn] = mInheritedSteps[dirn];
else
m2Steps[dirn] = v2Dirn / nFound;
}
return m2Steps;
};
int CalibImage::NextToExpand()
{
int nBest = -1;
double dBest = 0.0;
for(unsigned int i=0; i<mvGridCorners.size(); i++)
{
double d = mvGridCorners[i].ExpansionPotential();
if(d > dBest)
{
nBest = i;
dBest = d;
}
}
return nBest;
}
void CalibImage::ExpandByStep(int n)
{
static gvar3<double> gvdMaxStepDistFraction("CameraCalibrator.ExpandByStepMaxDistFrac", 0.3, SILENT);
static gvar3<int> gvnCornerPatchSize("CameraCalibrator.CornerPatchPixelSize", 20, SILENT);
CalibGridCorner &gSrc = mvGridCorners[n];
// First, choose which direction to expand in...
// Ideally, choose a dirn for which the Step calc is good!
int nDirn = -10;
for(int i=0; nDirn == -10 && i<4; i++)
{
if(gSrc.aNeighborStates[i].val == N_NOT_TRIED &&
gSrc.aNeighborStates[(i+2) % 4].val >= 0)
nDirn = i;
}
if(nDirn == -10)
for(int i=0; nDirn == -10 && i<4; i++)
{
if(gSrc.aNeighborStates[i].val == N_NOT_TRIED)
nDirn = i;
}
assert(nDirn != -10);
Vector<2> v2Step;
ImageRef irGridStep = IR_from_dirn(nDirn);
v2Step = gSrc.GetSteps(mvGridCorners).T() * vec(irGridStep);
Vector<2> v2SearchPos = gSrc.Params.v2Pos + v2Step;
// Before the search: pre-fill the failure result for easy returns.
gSrc.aNeighborStates[nDirn].val = N_FAILED;
ImageRef irBest;
double dBestDist = 99999;
for(unsigned int i=0; i<mvCorners.size(); i++)
{
Vector<2> v2Diff = vec(mvCorners[i]) - v2SearchPos;
if( (v2Diff * v2Diff) > (dBestDist * dBestDist) )
continue;
dBestDist = sqrt(v2Diff * v2Diff);
irBest = mvCorners[i];
}
double dStepDist= sqrt(v2Step * v2Step);
if(dBestDist > *gvdMaxStepDistFraction * dStepDist)
return;
CalibGridCorner gTarget;
gTarget.Params = gSrc.Params;
gTarget.Params.v2Pos = vec(irBest);
gTarget.Params.dGain *= -1;
gTarget.irGridPos = gSrc.irGridPos + irGridStep;
gTarget.mInheritedSteps = gSrc.GetSteps(mvGridCorners);
CalibCornerPatch Patch(*gvnCornerPatchSize);
if(!Patch.IterateOnImageWithDrawing(gTarget.Params, mim))
return;
// Update connection states:
int nTargetNum = static_cast<int>(mvGridCorners.size());
for(int dirn = 0; dirn<4; dirn++)
{
ImageRef irSearch = gTarget.irGridPos + IR_from_dirn(dirn);
for(unsigned int i=0; i<mvGridCorners.size(); i++)
if(mvGridCorners[i].irGridPos == irSearch)
{
gTarget.aNeighborStates[dirn].val = i;
mvGridCorners[i].aNeighborStates[(dirn + 2) % 4].val = nTargetNum;
}
}
mvGridCorners.push_back(gTarget);
mvGridCorners.back().Draw();
}
void CalibImage::DrawImageGrid()
{
glLineWidth(2);
glColor3f(0,0,1);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBegin(GL_LINES);
for(int i=0; i< (int) mvGridCorners.size(); i++)
{
for(int dirn=0; dirn<4; dirn++)
if(mvGridCorners[i].aNeighborStates[dirn].val > i)
{
glVertex(mvGridCorners[i].Params.v2Pos);
glVertex(mvGridCorners[mvGridCorners[i].aNeighborStates[dirn].val].Params.v2Pos);
}
}
glEnd();
glPointSize(5);
glEnable(GL_POINT_SMOOTH);
glColor3f(1,1,0);
glBegin(GL_POINTS);
for(unsigned int i=0; i<mvGridCorners.size(); i++)
glVertex(mvGridCorners[i].Params.v2Pos);
glEnd();
};
void CalibImage::Draw3DGrid(ATANCamera &Camera, bool bDrawErrors)
{
glLineWidth(2);
glColor3f(0,0,1);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBegin(GL_LINES);
for(int i=0; i< (int) mvGridCorners.size(); i++)
{
for(int dirn=0; dirn<4; dirn++)
if(mvGridCorners[i].aNeighborStates[dirn].val > i)
{
Vector<3> v3; v3[2] = 0.0;
v3.slice<0,2>() = vec(mvGridCorners[i].irGridPos);
glVertex(Camera.Project(project(mse3CamFromWorld * v3)));
v3.slice<0,2>() = vec(mvGridCorners[mvGridCorners[i].aNeighborStates[dirn].val].irGridPos);
glVertex(Camera.Project(project(mse3CamFromWorld * v3)));
}
}
glEnd();
if(bDrawErrors)
{
glColor3f(1,0,0);
glLineWidth(1);
glBegin(GL_LINES);
for(int i=0; i< (int) mvGridCorners.size(); i++)
{
Vector<3> v3; v3[2] = 0.0;
v3.slice<0,2>() = vec(mvGridCorners[i].irGridPos);
Vector<2> v2Pixels_Projected = Camera.Project(project(mse3CamFromWorld * v3));
Vector<2> v2Error = mvGridCorners[i].Params.v2Pos - v2Pixels_Projected;
glVertex(v2Pixels_Projected);
glVertex(v2Pixels_Projected + 10.0 * v2Error);
}
glEnd();
}
};
ImageRef CalibImage::IR_from_dirn(int nDirn)
{
ImageRef ir;
ir[nDirn%2] = (nDirn < 2) ? 1: -1;
return ir;
}
void CalibImage::GuessInitialPose(ATANCamera &Camera)
{
// First, find a homography which maps the grid to the unprojected image coords
// Use the standard null-space-of-SVD-thing to find 9 homography parms
// (c.f. appendix of thesis)
int nPoints = static_cast<int>(mvGridCorners.size());
Matrix<> m2Nx9(2*nPoints, 9);
for(int n=0; n<nPoints; n++)
{
// First, un-project the points to the image plane
Vector<2> v2UnProj = Camera.UnProject(mvGridCorners[n].Params.v2Pos);
double u = v2UnProj[0];
double v = v2UnProj[1];
// Then fill in the matrix..
double x = mvGridCorners[n].irGridPos.x;
double y = mvGridCorners[n].irGridPos.y;
m2Nx9[n*2+0][0] = x;
m2Nx9[n*2+0][1] = y;
m2Nx9[n*2+0][2] = 1;
m2Nx9[n*2+0][3] = 0;
m2Nx9[n*2+0][4] = 0;
m2Nx9[n*2+0][5] = 0;
m2Nx9[n*2+0][6] = -x*u;
m2Nx9[n*2+0][7] = -y*u;
m2Nx9[n*2+0][8] = -u;
m2Nx9[n*2+1][0] = 0;
m2Nx9[n*2+1][1] = 0;
m2Nx9[n*2+1][2] = 0;
m2Nx9[n*2+1][3] = x;
m2Nx9[n*2+1][4] = y;
m2Nx9[n*2+1][5] = 1;
m2Nx9[n*2+1][6] = -x*v;
m2Nx9[n*2+1][7] = -y*v;
m2Nx9[n*2+1][8] = -v;
}
// The right null-space (should only be one) of the matrix gives the homography...
SVD<> svdHomography(m2Nx9);
Vector<9> vH = svdHomography.get_VT()[8];
Matrix<3> m3Homography;
m3Homography[0] = vH.slice<0,3>();
m3Homography[1] = vH.slice<3,3>();
m3Homography[2] = vH.slice<6,3>();
// Fix up possibly poorly conditioned bits of the homography
{
SVD<2> svdTopLeftBit(m3Homography.slice<0,0,2,2>());
Vector<2> v2Diagonal = svdTopLeftBit.get_diagonal();
m3Homography = m3Homography / v2Diagonal[0];
v2Diagonal = v2Diagonal / v2Diagonal[0];
double dLambda2 = v2Diagonal[1];
Vector<2> v2b; // This is one hypothesis for v2b ; the other is the negative.
v2b[0] = 0.0;
v2b[1] = sqrt( 1.0 - (dLambda2 * dLambda2));
Vector<2> v2aprime = v2b * svdTopLeftBit.get_VT();
Vector<2> v2a = m3Homography[2].slice<0,2>();
double dDotProd = v2a * v2aprime;
if(dDotProd>0)
m3Homography[2].slice<0,2>() = v2aprime;
else
m3Homography[2].slice<0,2>() = -v2aprime;
}
// OK, now turn homography into something 3D ...simple gram-schmidt ortho-norm
// Take 3x3 matrix H with column: abt
// And add a new 3rd column: abct
Matrix<3> mRotation;
Vector<3> vTranslation;
double dMag1 = sqrt(m3Homography.T()[0] * m3Homography.T()[0]);
m3Homography = m3Homography / dMag1;
mRotation.T()[0] = m3Homography.T()[0];
// ( all components of the first vector are removed from the second...
mRotation.T()[1] = m3Homography.T()[1] - m3Homography.T()[0]*(m3Homography.T()[0]*m3Homography.T()[1]);
mRotation.T()[1] /= sqrt(mRotation.T()[1] * mRotation.T()[1]);
mRotation.T()[2] = mRotation.T()[0]^mRotation.T()[1];
vTranslation = m3Homography.T()[2];
// Store result
mse3CamFromWorld.get_rotation()=mRotation;
mse3CamFromWorld.get_translation() = vTranslation;
};
vector<CalibImage::ErrorAndJacobians> CalibImage::Project(ATANCamera &Camera)
{
vector<ErrorAndJacobians> vResult;
for(unsigned int n=0; n<mvGridCorners.size(); n++)
{
ErrorAndJacobians EAJ;
// First, project into image...
Vector<3> v3World;
v3World[2] = 0.0;
v3World.slice<0,2>() = vec(mvGridCorners[n].irGridPos);
Vector<3> v3Cam = mse3CamFromWorld * v3World;
if(v3Cam[2] <= 0.001)
continue;
Vector<2> v2Image = Camera.Project(project(v3Cam));
if(Camera.Invalid())
continue;
EAJ.v2Error = mvGridCorners[n].Params.v2Pos - v2Image;
// Now find motion jacobian..
double dOneOverCameraZ = 1.0 / v3Cam[2];
Matrix<2> m2CamDerivs = Camera.GetProjectionDerivs();
for(int dof=0; dof<6; dof++)
{
const Vector<4> v4Motion = SE3<>::generator_field(dof, unproject(v3Cam));
Vector<2> v2CamFrameMotion;
v2CamFrameMotion[0] = (v4Motion[0] - v3Cam[0] * v4Motion[2] * dOneOverCameraZ) * dOneOverCameraZ;
v2CamFrameMotion[1] = (v4Motion[1] - v3Cam[1] * v4Motion[2] * dOneOverCameraZ) * dOneOverCameraZ;
EAJ.m26PoseJac.T()[dof] = m2CamDerivs * v2CamFrameMotion;
};
// Finally, the camera provids its own jacobian
EAJ.m2NCameraJac = Camera.GetCameraParameterDerivs();
vResult.push_back(EAJ);
}
return vResult;
};
}