-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvectors.inc
322 lines (202 loc) · 7.11 KB
/
vectors.inc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7 ======= 8 ======= 9 ======= 10
/*
https://github.com/t-o-k/Useful-POV-Ray-macros
Copyright (c) 2021-2024 Tor Olav Kristensen, http://subcube.com
Use of this source code is governed by the GNU Lesser General Public License version 3,
which can be found in the LICENSE file.
Relevant Wikipedia articles:
https://en.wikipedia.org/wiki/Euclidean_vector
https://en.wikipedia.org/wiki/Multiplication_of_vectors
https://en.wikipedia.org/wiki/Scalar_projection
https://en.wikipedia.org/wiki/Vector_projection
https://en.wikipedia.org/wiki/Triple_product
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
https://en.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula
*/
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7 ======= 8 ======= 9 ======= 10
#version 3.7;
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7 ======= 8 ======= 9 ======= 10
#macro ScalarTripleProduct(vA, vB, vC)
vdot(vA, vcross(vB, vC))
#end // macro ScalarTripleProduct
#macro VectorTripleProduct(vA, vB, vC)
vcross(vA, vcross(vB, vC))
#end // macro VectorTripleProduct
/*
// The version above is faster
#macro VectorTripleProduct(vA, vB, vC)
(vdot(vA, vC)*vB - vdot(vA, vB)*vC)
#end // macro VectorTripleProduct
*/
#macro VectorCos(vA, vB)
min(max(-1, vdot(vnormalize(vA), vnormalize(vB))), +1)
#end // macro VectorCos
#macro VectorSin(vA, vB)
min(vlength(vcross(vnormalize(vA), vnormalize(vB))), +1)
#end // macro VectorSin
#macro AngleBetweenVectors(vA, vB)
acos(min(max(-1, vdot(vnormalize(vA), vnormalize(vB))), +1))
#end // macro AngleBetweenVectors
// Use this version if the vectors may be almost parallel or antiparallel
// The version above is faster
/*
Kahan, W. (2016): Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean Spaces
https://people.eecs.berkeley.edu/~wkahan/MathH110/Cross.pdf
*/
#macro AccurateAngleBetweenVectors(vA, vB)
#local vAn = vnormalize(vA);
#local vBn = vnormalize(vB);
(2*atan2(vlength(vAn - vBn), vlength(vAn + vBn)))
#end // macro AccurateAngleBetweenVectors
#macro ScalarProject(vA, vB)
vdot(vA, vnormalize(vB))
#end // macro ScalarProject
#macro VectorProject(vA, vB)
(vdot(vA, vB)/vdot(vB, vB)*vB)
#end // macro VectorProject
#macro ScalarReject(vA, vB)
vdot(vA, vnormalize(vcross(vB, vcross(vA, vB))))
#end // macro ScalarReject
#macro VectorReject(vA, vB)
(vA - vdot(vA, vB)/vdot(vB, vB)*vB)
#end // macro VectorReject
#macro OrthogonalVector(v0)
#if (vlength(v0) = 0)
#local vN = <0, 0, 0>;
#else
#local Dm = min(abs(v0.x), abs(v0.y), abs(v0.z));
#if (abs(v0.z) = Dm)
#local vN = vnormalize(vcross(v0, z));
#else
#if (abs(v0.y) = Dm)
#local vN = vnormalize(vcross(v0, y));
#else
#local vN = vnormalize(vcross(v0, x));
#end // if
#end // if
#end // if
vN
#end // macro OrthogonalVector
// Alternative to the version abvoe
#macro AltOrthogonalVector(v0)
#switch (min(abs(v0.x), abs(v0.y), abs(v0.z)))
#case (abs(v0.z))
#local vE = z;
#break
#case (abs(v0.y))
#local vE = y;
#break
#case (abs(v0.x))
#local vE = x;
#break
#else
#local vE = <0, 0, 0>;
#end // switch
#local vP = vdot(v0, v0)*vE - vdot(vE, v0)*v0;
#if (vlength(vP) = 0)
#local vN = <0, 0, 0>;
#else
#local vN = vnormalize(vP);
#end // if
vN
#end // macro AltOrthogonalVector
// Use built in vaxis_rotate() instead
#macro VectorAxisRotate(v0, vAxis, Angle)
#local Phi = radians(Angle);
#local vA = vnormalize(vAxis);
#local v1 = vcross(v0, vA);
#local v2 = vcross(v1, vA);
(v0 - sin(Phi)*v1 + (1 - cos(Phi))*v2)
#end // macro VectorAxisRotate
#macro VectorReorient(v0, vFrom, vTo)
#local vF = vnormalize(vFrom);
#local vT = vnormalize(vTo);
#local vAxis = vcross(vF, vT);
#local Cos = vdot(vF, vT);
#local Sin = vlength(vAxis);
#if (Sin = 0)
#local vR = (Cos < 0 ? -v0 : +v0);
#else
#local vA = vAxis/Sin;
#local v1 = vcross(v0, vA);
#local v2 = vcross(v1, vA);
#local vR = v0 - Sin*v1 + (1 - Cos)*v2;
#end // if
vR
#end // macro VectorReorient
#macro FunctionValue(Fn, v0)
Fn(v0.x, v0.y, v0.z)
#end // macro FunctionValue
#macro VectorTransform(v0, Transform)
FunctionValue(function { transform { Transform } }, v0)
#end // macro VectorTransform
#macro VectorInverseTransform(v0, Transform)
FunctionValue(function { transform { Transform inverse } }, v0)
#end // macro VectorInverseTransform
#macro TransformFromVectors(vX, vY, vZ, pT)
transform {
matrix <
vX.x, vX.y, vX.z,
vY.x, vY.y, vY.z,
vZ.x, vZ.y, vZ.z,
pT.x, pT.y, pT.z
>
}
#end // macro TransformFromVectors
#macro TransformFromTransformFunction(TransformFn)
#local pT = TransformFn(0, 0, 0);
TransformFromVectors(
TransformFn(1, 0, 0) - pT,
TransformFn(0, 1, 0) - pT,
TransformFn(0, 0, 1) - pT,
pT
)
#end // macro TransformFromTransformFunction
#macro TransformFunctionFromTransform(Transform)
function { transform { Transform } }
#end // macro TransformFunctionFromTransform
#macro TransformFunctionFromVectors(vX, vY, vZ, pT)
function { TransformFromVectors(vX, vY, vZ, pT) }
#end // macro TransformFunctionFromVectors
#macro VectorsFromTransformFunction(TransformFn, vX, vY, vZ, pT)
#declare pT = TransformFn(0, 0, 0);
#declare vX = TransformFn(1, 0, 0) - pT;
#declare vY = TransformFn(0, 1, 0) - pT;
#declare vZ = TransformFn(0, 0, 1) - pT;
#end // macro VectorsFromTransformFunction
#macro VectorsFromTransform(Transform, vX, vY, vZ, pT)
VectorsFromTransformFunction(function { transform { Transform } }, vX, vY, vZ, pT)
#end // macro VectorsFromTransform
#macro AxisRotateTransform(vAxis, Angle)
TransformFromVectors(
vaxis_rotate(x, vAxis, Angle),
vaxis_rotate(y, vAxis, Angle),
vaxis_rotate(z, vAxis, Angle),
<0, 0, 0>
)
#end // macro AxisRotateTransform
#macro ReorientTransform(vFrom, vTo)
#local vF = vnormalize(vFrom);
#local vT = vnormalize(vTo);
#local Dot = min(max(-1, vdot(vF, vT)), +1);
#if (abs(Dot) = 1)
#if (Dot = +1)
#local Transform = transform { }
#else
#local Transform = transform { scale -<1, 1, 1> }
#end // if
#else
#local vAxis = vcross(vF, vT);
#local Angle = degrees(acos(Dot));
#local Transform =
TransformFromVectors(
vaxis_rotate(x, vAxis, Angle),
vaxis_rotate(y, vAxis, Angle),
vaxis_rotate(z, vAxis, Angle),
<0, 0, 0>
)
#end // if
Transform
#end // macro ReorientTransform
// ===== 1 ======= 2 ======= 3 ======= 4 ======= 5 ======= 6 ======= 7 ======= 8 ======= 9 ======= 10