-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathgradio_app.py
230 lines (195 loc) · 10 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torchvision
import numpy as np
import os
from omegaconf import OmegaConf
from PIL import Image
from utils.app_utils import (
remove_background,
resize_foreground,
set_white_background,
resize_to_128,
to_tensor,
get_source_camera_v2w_rmo_and_quats,
get_target_cameras,
export_to_obj)
import imageio
from scene.gaussian_predictor import GaussianSplatPredictor
from gaussian_renderer import render_predicted
import gradio as gr
import rembg
from huggingface_hub import hf_hub_download
@torch.no_grad()
def main():
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = torch.device("cuda:0")
torch.cuda.set_device(device)
model_cfg = OmegaConf.load(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"gradio_config.yaml"
))
model_path = hf_hub_download(repo_id="szymanowiczs/splatter-image-multi-category-v1",
filename="model_latest.pth")
model = GaussianSplatPredictor(model_cfg)
ckpt_loaded = torch.load(model_path, map_location=device)
model.load_state_dict(ckpt_loaded["model_state_dict"])
model.to(device)
# ============= image preprocessing =============
rembg_session = rembg.new_session()
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, preprocess_background=True, foreground_ratio=0.65):
# 0.7 seems to be a reasonable foreground ratio
if preprocess_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = set_white_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = set_white_background(image)
image = resize_to_128(image)
return image
ply_out_path = f'./mesh.ply'
def reconstruct_and_export(image):
"""
Passes image through model, outputs reconstruction in form of a dict of tensors.
"""
image = to_tensor(image).to(device)
view_to_world_source, rot_transform_quats = get_source_camera_v2w_rmo_and_quats()
view_to_world_source = view_to_world_source.to(device)
rot_transform_quats = rot_transform_quats.to(device)
reconstruction_unactivated = model(
image.unsqueeze(0).unsqueeze(0),
view_to_world_source,
rot_transform_quats,
None,
activate_output=False)
reconstruction = {k: v[0].contiguous() for k, v in reconstruction_unactivated.items()}
reconstruction["scaling"] = model.scaling_activation(reconstruction["scaling"])
reconstruction["opacity"] = model.opacity_activation(reconstruction["opacity"])
# render images in a loop
world_view_transforms, full_proj_transforms, camera_centers = get_target_cameras()
background = torch.tensor([1, 1, 1] , dtype=torch.float32, device=device)
loop_renders = []
t_to_512 = torchvision.transforms.Resize(512, interpolation=torchvision.transforms.InterpolationMode.NEAREST)
for r_idx in range( world_view_transforms.shape[0]):
image = render_predicted(reconstruction,
world_view_transforms[r_idx].to(device),
full_proj_transforms[r_idx].to(device),
camera_centers[r_idx].to(device),
background,
model_cfg,
focals_pixels=None)["render"]
image = t_to_512(image)
loop_renders.append(torch.clamp(image * 255, 0.0, 255.0).detach().permute(1, 2, 0).cpu().numpy().astype(np.uint8))
loop_out_path = os.path.join(os.path.dirname(ply_out_path), "loop.mp4")
imageio.mimsave(loop_out_path, loop_renders, fps=25)
# export reconstruction to ply
export_to_obj(reconstruction_unactivated, ply_out_path)
return ply_out_path, loop_out_path
css = """
h1 {
text-align: center;
display:block;
}
"""
def run_example(image):
preprocessed = preprocess(image)
ply_out_path, loop_out_path = reconstruct_and_export(np.array(preprocessed))
return preprocessed, ply_out_path, loop_out_path
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Splatter Image
**Splatter Image (CVPR 2024)** [[code](https://github.com/szymanowiczs/splatter-image), [project page](https://szymanowiczs.github.io/splatter-image)] is a fast, super cheap-to-train method for object 3D reconstruction from a single image.
The model used in the demo was trained on **Objaverse-LVIS on 2 A6000 GPUs for 3.5 days**.
Locally, on an NVIDIA V100 GPU, reconstruction (forward pass of the network) can be done at 38FPS and rendering (with Gaussian Splatting) at 588FPS.
Upload an image of an object or click on one of the provided examples to see how the Splatter Image does.
The 3D viewer will render a .ply object exported from the 3D Gaussians, which is only an approximation.
For best results run the demo locally and render locally with Gaussian Splatting - to do so, clone the [main repository](https://github.com/szymanowiczs/splatter-image).
"""
)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Row():
with gr.Group():
preprocess_background = gr.Checkbox(
label="Remove Background", value=True
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
'./demo_examples/01_bigmac.png',
'./demo_examples/02_hydrant.jpg',
'./demo_examples/03_spyro.png',
'./demo_examples/04_lysol.png',
'./demo_examples/05_pinapple_bottle.png',
'./demo_examples/06_unsplash_broccoli.png',
'./demo_examples/07_objaverse_backpack.png',
'./demo_examples/08_unsplash_chocolatecake.png',
'./demo_examples/09_realfusion_cherry.png',
'./demo_examples/10_triposr_teapot.png'
],
inputs=[input_image],
cache_examples=False,
label="Examples",
examples_per_page=20,
)
with gr.Column():
with gr.Row():
with gr.Tab("Reconstruction"):
with gr.Column():
output_video = gr.Video(value=None, width=512, label="Rendered Video", autoplay=True)
output_model = gr.Model3D(
height=512,
label="Output Model",
interactive=False
)
gr.Markdown(
"""
## Comments:
1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximations and artefacts might show.
3. Known limitations include:
- a black dot appearing on the model from some viewpoints
- see-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes
- back of objects are blurry: this is a model limiation due to it being deterministic
4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
## How does it work?
Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image,
in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours and locations.
The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
The rendering is also very fast, due to using Gaussian Splatting.
Combined, this results in very cheap training and high-quality results.
For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
"""
)
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, preprocess_background],
outputs=[processed_image],
).success(
fn=reconstruct_and_export,
inputs=[processed_image],
outputs=[output_model, output_video],
)
demo.queue(max_size=1)
demo.launch()
if __name__ == "__main__":
main()