From 4821cf3dd54b39f7888ad3d004c16b55d2c0803d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Szabolcs=20Horva=CC=81t?= Date: Thu, 30 Nov 2017 13:44:04 +0100 Subject: [PATCH] Update documentation. --- .../English/Tutorials/IGDocumentation.nb | 524 ++++++++++++++++-- 1 file changed, 481 insertions(+), 43 deletions(-) diff --git a/IGraphM/Documentation/English/Tutorials/IGDocumentation.nb b/IGraphM/Documentation/English/Tutorials/IGDocumentation.nb index 9ee361da..324bb53a 100644 --- a/IGraphM/Documentation/English/Tutorials/IGDocumentation.nb +++ b/IGraphM/Documentation/English/Tutorials/IGDocumentation.nb @@ -3052,8 +3052,9 @@ Cell[BoxData[ RowBox[{"IGBipartiteQ", "[", "g", "]"}]], "Input",ExpressionUUID->"e5f21391-5eb0-4376-a811-0f13429c4732"], -Cell["Verify that no edges run between two vertex subsets.", \ -"Text",ExpressionUUID->"022695fa-9c87-48b7-91e3-f9d4867dae60"], +Cell["\<\ +Verify that no edges run between two vertex subsets of the graph.\ +\>", "Text",ExpressionUUID->"022695fa-9c87-48b7-91e3-f9d4867dae60"], Cell[BoxData[ RowBox[{"IGBipartiteQ", "[", @@ -3073,8 +3074,10 @@ Cell[BoxData[ RowBox[{"IGBipartitePartitions", "[", "g", "]"}]], "Input",ExpressionUUID->"ffc8be47-d15e-47a0-8725-5519b6afa1ee"], -Cell["Let the first partition contain vertex 10.", \ -"Text",ExpressionUUID->"9dbd4e53-403e-490e-8ed8-bda8d3001475"], +Cell["\<\ +Ensure that the partitions are returned in such an order that the first one \ +contains vertex 10.\ +\>", "Text",ExpressionUUID->"9dbd4e53-403e-490e-8ed8-bda8d3001475"], Cell[BoxData[ RowBox[{"IGBipartitePartitions", "[", @@ -3095,17 +3098,22 @@ Cell[BoxData[ Cell["Compute an incidence matrix.", \ "Text",ExpressionUUID->"19a6b76c-c297-42fb-a1bf-f3f0bd938e7a"], -Cell[BoxData[ - RowBox[{"bm", "=", - RowBox[{ - "IGBipartiteIncidenceMatrix", "[", "g", - "]"}]}]], "Input",ExpressionUUID->"14c079b8-644c-4485-9294-a5986596813c"], +Cell[BoxData[{ + RowBox[{ + RowBox[{"bm", "=", + RowBox[{"IGBipartiteIncidenceMatrix", "[", "g", "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"MatrixPlot", "[", "bm", + "]"}]}], "Input",ExpressionUUID->"14c079b8-644c-4485-9294-a5986596813c"], Cell["Reconstruct a graph from an incidence matrix.", \ "Text",ExpressionUUID->"e4ee9ae1-22a1-48da-b487-6a8cc8210fd0"], Cell[BoxData[ - RowBox[{"IGBipartiteIncidenceGraph", "[", "bm", + RowBox[{"IGBipartiteIncidenceGraph", "[", + RowBox[{"bm", ",", + RowBox[{"VertexLabels", "\[Rule]", "\"\\""}], ",", + RowBox[{"GraphLayout", "\[Rule]", "\"\\""}]}], "]"}]], "Input",ExpressionUUID->"d7d2c6b0-9837-42dd-9601-a2037d5a7475"], Cell["\<\ @@ -3122,7 +3130,23 @@ Cell[BoxData[ RowBox[{"1", ",", "2", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"6", ",", "7", ",", "8"}], "}"}]}], "}"}]}], - "]"}]], "Input",ExpressionUUID->"21108a56-c86b-4a39-b6a4-74fe9d0ad106"] + "]"}]], "Input",ExpressionUUID->"21108a56-c86b-4a39-b6a4-74fe9d0ad106"], + +Cell["\<\ +Reconstruct the bipartite graph while specifying vertex names.\ +\>", "Text",ExpressionUUID->"26eadf19-5fec-45c7-8605-fd3e0a7bd553"], + +Cell[BoxData[ + RowBox[{"IGBipartiteIncidenceGraph", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", "e", ",", "f"}], "}"}]}], "}"}], ",", "%", ",", + RowBox[{"VertexLabels", "\[Rule]", "\"\\""}]}], + "]"}]], "Input",ExpressionUUID->"fb0d1c7b-35c7-4dd9-b4a4-c21983991b64"] }, Closed]], Cell[CellGroupData[{ @@ -4022,9 +4046,9 @@ Cell[BoxData[ ")"}]}]], "Input",ExpressionUUID->"8c425de4-93b2-4c4c-b3e2-166976a318fa"], Cell["\<\ -Visualize the groups of vertices members of which may be transformed into \ -each other by some graph automorphism.\ -\>", "Text",ExpressionUUID->"e83d34de-bf5e-4275-bca0-6c5ae8d2f00a"], +Visualize the vertex equivalence classes induced by a \ +graph\[CloseCurlyQuote]s automorphism group.\ +\>", "Text",ExpressionUUID->"35a9ad83-4575-4654-be72-1095ac245c21"], Cell[BoxData[ RowBox[{"With", "[", @@ -4045,6 +4069,40 @@ Cell[BoxData[ "\[IndentingNewLine]", "]"}]], "Input",ExpressionUUID->"28236d5f-b5e0-4115-8519-775449e0d325"], +Cell["\<\ +Visualize the edge equivalence classes of a polyhedron, induced by its graph\ +\[CloseCurlyQuote]s automorphism group.\ +\>", "Text",ExpressionUUID->"1c6cd318-482f-4fc7-823a-9a38069ea8fb"], + +Cell[BoxData[ + RowBox[{"mesh", "=", + RowBox[{"PolyhedronData", "[", + RowBox[{"\"\\"", ",", "\"\\""}], + "]"}]}]], "Input",ExpressionUUID->"7ccf1cfa-b503-4424-912b-47f31d6171d7"], + +Cell[BoxData[ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"g", "=", + RowBox[{"IGMeshGraph", "[", + RowBox[{"mesh", ",", + RowBox[{"VertexStyle", "\[Rule]", "Black"}]}], "]"}]}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{"HighlightGraph", "[", + RowBox[{"g", ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"EdgeList", "[", "g", "]"}], "[", + RowBox[{"[", "#", "]"}], "]"}], "&"}], "/@", + RowBox[{"GroupOrbits", "@", + RowBox[{"PermutationGroup", "@", + RowBox[{"IGBlissAutomorphismGroup", "@", + RowBox[{"LineGraph", "[", "g", "]"}]}]}]}]}]}], + "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", + "]"}]], "Input",ExpressionUUID->"3e6c7cb2-2610-4017-b238-e8cfb9d64465"], + Cell["\<\ Bliss works by computing a canonical labelling of vertices. Then isomorphism \ can be tested for by comparing the canonically relabelled graphs.\ @@ -24038,14 +24096,12 @@ Cell[BoxData[ Cell[TextData[{ "When the ", - Cell[BoxData["\"\\""], - FormatType->"StandardForm",ExpressionUUID-> - "4e95b1f6-a32f-4dc6-973a-7d31d20fa631"], + Cell[BoxData[ + "\"\\""],ExpressionUUID->"4e95b1f6-a32f-4dc6-973a-7d31d20fa631"], " property is available, ", Cell[BoxData[ RowBox[{"Max", "[", - RowBox[{"cl", "[", "\"\\"", "]"}], "]"}]], - FormatType->"StandardForm",ExpressionUUID-> + RowBox[{"cl", "[", "\"\\"", "]"}], "]"}]],ExpressionUUID-> "cfe40ab6-a485-4d53-9801-5dc37f43df1a"], " gives the modularity of the current partitioning." }], "Text",ExpressionUUID->"3f3ee0ff-51fd-444b-b9a0-d8a6e2e1a984"], @@ -24149,13 +24205,12 @@ Cell["Available option values:", \ "Text",ExpressionUUID->"4178550c-d8a0-4db2-b4dc-861f3631e085"], Cell[TextData[{ - Cell[BoxData["\"\\""], - FormatType->"StandardForm",ExpressionUUID-> + Cell[BoxData[ + "\"\\""],ExpressionUUID-> "8040066d-c28f-4da6-afb3-6338b62c1676"], ", the number of communities to return. Default: ", - Cell[BoxData["Automatic"], - FormatType->"StandardForm",ExpressionUUID-> - "9ad9bf8e-2f09-495e-8da1-29994dd460d9"], + Cell[BoxData[ + "Automatic"],ExpressionUUID->"9ad9bf8e-2f09-495e-8da1-29994dd460d9"], "." }], "Item",ExpressionUUID->"b4376456-17b1-4004-acd1-c7a46b1c48b3"], @@ -24180,8 +24235,7 @@ Cell[BoxData[ Cell[TextData[{ Cell[BoxData[ - RowBox[{"IGCommunitiesFluid", "[", "]"}]], - FormatType->"StandardForm",ExpressionUUID-> + RowBox[{"IGCommunitiesFluid", "[", "]"}]],ExpressionUUID-> "c96a24c6-55a5-4096-bdbf-d9d84549ea9a"], " implements the fluid communities algorithm." }], "Text",ExpressionUUID->"87d2126d-3a35-4b11-b6d8-c488118b79bd"], @@ -24295,14 +24349,13 @@ Cell["Available option values:", \ "Text",ExpressionUUID->"77e1ca42-9f1f-40bb-89dc-347698c23151"], Cell[TextData[{ - Cell[BoxData["\"\\""], - FormatType->"StandardForm",ExpressionUUID-> + Cell[BoxData[ + "\"\\""],ExpressionUUID-> "25ddd142-8e19-4f7b-ab66-2e6643fe45ec"], ", the number of communities to return. May return fewer communities than \ requested. Default: ", - Cell[BoxData["Automatic"], - FormatType->"StandardForm",ExpressionUUID-> - "f09d9bdb-902d-472a-9fe3-f66fadd3e13f"], + Cell[BoxData[ + "Automatic"],ExpressionUUID->"f09d9bdb-902d-472a-9fe3-f66fadd3e13f"], "." }], "Item",ExpressionUUID->"2b65218d-1359-4b6b-89c6-95c7b91030fa"], @@ -24475,13 +24528,12 @@ Cell["Available option values:", \ "Text",ExpressionUUID->"61973d41-364d-4247-b8dc-fcb0fe0abc33"], Cell[TextData[{ - Cell[BoxData["\"\\""], - FormatType->"StandardForm",ExpressionUUID-> + Cell[BoxData[ + "\"\\""],ExpressionUUID-> "4a22a609-8995-49b1-91d7-b8b6b847eb45"], ", the number of communities to return. Default: ", - Cell[BoxData["Automatic"], - FormatType->"StandardForm",ExpressionUUID-> - "4261f2f2-764d-44d0-b446-c24b6695ca51"], + Cell[BoxData[ + "Automatic"],ExpressionUUID->"4261f2f2-764d-44d0-b446-c24b6695ca51"], "." }], "Item",ExpressionUUID->"fb817a5a-d497-474c-8f05-7a060bba2899"], @@ -24952,7 +25004,390 @@ Cell[BoxData[ Cell[BoxData[ RowBox[{"?", "IGRandomEdgeIndexWalk"}]], \ -"Input",ExpressionUUID->"d31255a3-f65d-4d13-aa77-7529e27fb7fd"] +"Input",ExpressionUUID->"d31255a3-f65d-4d13-aa77-7529e27fb7fd"], + +Cell[TextData[{ + Cell[BoxData[ + "IGRandomEdgeWalk"],ExpressionUUID->"94ba92be-25e4-4540-b8c8-7671071e50e6"], + " takes a random walk on a graph and returns the list of traversed edges." +}], "Text",ExpressionUUID->"cf55b1e4-c2f5-485a-a3ce-d8045a69ba28"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"g", "=", + RowBox[{"IGDeBruijnGraph", "[", + RowBox[{"3", ",", "3"}], "]"}]}], ";"}], "\n", + RowBox[{"IGRandomEdgeWalk", "[", + RowBox[{"g", ",", + RowBox[{"RandomChoice", "@", + RowBox[{"VertexList", "[", "g", "]"}]}], ",", "20"}], + "]"}]}], "Input",ExpressionUUID->"dc186e4d-684f-4300-84a7-f40de0ac0906"], + +Cell[TextData[{ + Cell[BoxData[ + "IGRandomEdgeIndexWalk"],ExpressionUUID-> + "4e618bb5-fd31-4754-a923-50b060e5b2ad"], + " returns the list of indices of the traversed edges instead. This makes it \ +useful for working with multigraphs, as it allows distinguishing between \ +parallel edges." +}], "Text",ExpressionUUID->"f0bf8b59-db06-4c5f-9b2f-cdbf80c77c16"], + +Cell["\<\ +As an example application, let us consider the following set of affine \ +transformations ...\ +\>", "Text",ExpressionUUID->"c3bd6bfe-16ac-4052-ba07-a7f9dac1f989"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"scale12", "=", + RowBox[{"ScalingTransform", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "2"}], ",", + RowBox[{"1", "/", "2"}]}], "}"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"a11", "=", + RowBox[{ + RowBox[{"TranslationTransform", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "4"}], ",", + RowBox[{ + SqrtBox["3"], "/", "4"}]}], "}"}], "]"}], "@*", "scale12"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"a21", "=", + RowBox[{ + RowBox[{"RotationTransform", "[", + RowBox[{"Pi", "/", "3"}], "]"}], "@*", "scale12"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"b21", "=", + RowBox[{ + RowBox[{"TranslationTransform", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"3", "/", "4"}], ",", + RowBox[{ + SqrtBox["3"], "/", "4"}]}], "}"}], "]"}], "@*", + RowBox[{"RotationTransform", "[", + RowBox[{ + RowBox[{"-", "Pi"}], "/", "3"}], "]"}], "@*", "scale12"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"a12", "=", + RowBox[{ + RowBox[{"TranslationTransform", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "2"}], ",", "0"}], "}"}], "]"}], "@*", + RowBox[{"ScalingTransform", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "2"}], ",", + RowBox[{ + RowBox[{"-", "1"}], "/", "2"}]}], "}"}], "]"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"a22", "=", "scale12"}], + ";"}]}], "Input",ExpressionUUID->"c352de74-f85f-43f4-aa11-c08f3d6a6fab"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"trafos", "=", + RowBox[{"{", + RowBox[{"a11", ",", "a21", ",", "b21", ",", "a12", ",", "a22"}], "}"}]}], + ";"}]], "Input",ExpressionUUID->"fdc47f92-459f-419b-b72c-e30029afebff"], + +Cell["... and visualize them.", \ +"Text",ExpressionUUID->"0c75bf21-2866-4023-8276-cc1903a2e5f6"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"tri", "=", + RowBox[{"Triangle", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "2"}], ",", + RowBox[{ + SqrtBox["3"], "/", "2"}]}], "}"}]}], "}"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Graphics", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"tri", ",", "Red", ",", + RowBox[{"GeometricTransformation", "[", + RowBox[{"tri", ",", "#"}], "]"}]}], "}"}], ",", + RowBox[{"ImageSize", "\[Rule]", "Tiny"}]}], "]"}], "&"}], "/@", + "trafos"}]}], \ +"Input",ExpressionUUID->"08499770-7252-4c1d-9b71-58955ee55336"], + +Cell["\<\ +These transformations describe the mutual self-similarity structure of two \ +fractal curves, according to the following directed graph. Each edge of the \ +graph corresponds to a transformation.\ +\>", "Text",ExpressionUUID->"b22b35ed-2d38-4e8e-8de2-7fdb9c1bcd09"], + +Cell[BoxData[ + RowBox[{"graph", "=", + RowBox[{"Graph", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"1", "\[Rule]", "1"}], ",", + RowBox[{"2", "\[Rule]", "1"}], ",", + RowBox[{"2", "\[Rule]", "1"}], ",", + RowBox[{"1", "\[Rule]", "2"}], ",", + RowBox[{"2", "\[Rule]", "2"}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"VertexLabels", "\[Rule]", + RowBox[{"Placed", "[", + RowBox[{"\"\\"", ",", "Center"}], "]"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"VertexShape", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "\[Rule]", + GraphicsBox[ + TagBox[RasterBox[CompressedData[" +1:eJzt3M2O7DgVAOACNix5Bd4CsWPJdhAPMCMuA5uLNIOEePpwh5ZKaTtx4vzY +sf19Elfd1anEOT4+cbk8/P6Hf33391+/Xq+ff/vtn+++/8+ffvrp+//+5Xff +fvnr15//+ePXL3/789d/f/nxy09/+OE33178469er398+98vP08AAAAAAAAA +wP1e/1e7FUBL1A0gy2umdluABswrhroB7DGfZphyAJuCQqFuAJviZQ2lA0hY +XA5VN4CEtRKhbgCLEkXDlAOI7akMSgcQ2CwdZh1ALF0Z1A3g7fXZ5mEl2wY8 +0HxLeboyqBvAW1YpUDdgcHs+nsTH390q4LFyP3fMD1Y9YEy5Y/8VualhwDMd +GPjqBgzu/MBXOmAol8wZ1A0Y0CWl48L2AE04UzcsdMCwrHIAB1jlADYFg/3w +2Fc0oHvxBoz3wD+8nSP+GejGYqGIC8ixE1oghS7dPa4VDejSfUPbZAP6c3gR +Y//51Q3oyd2rEBY3oDOLC6F3XELdgJ7cOqhVDOjM3d+Qrp1cMYF2lfzu9e5P +Q0ABBYrGpvuuDtyh+rCt3gAgyxPGrCkHNOQhA/YhzQA2PWeFoXoDgJ2esz5Z +vQHAMdXHrLoBban+xDffgEbVrRuLPwPPV6V0PGSZBTisYt2o1QDgjCc87qs3 +AMhS/ZPCEwoXcED1L1aqXBrYlB6edRdIC18X2Ck9QssPYRUDHm5PWSg5kBUN +eKzgu85gtMaDt9hwXruQegIVLe6tCn5YO6ZY24KWTOoGVJIeiWvFJH69TAsT +xQ0oo4NB18EtQFvKTBju03r7oV1ND712Ww6ta3H0Wd+AulocfcUWZoFFLY6+ +FtsMrYvHXVvDUN2AwoIZfltrBa/PO0wqtgQGkdhG1UTdaLHN0LQORlnr7YcW +tT7uWm8/NKrdodfBfAma09b6Z8BqBhTWwVpibstbvEd4lEZrxVtu+9stj/AQ +rQ+itcbHLwYfxNq9Zair6Yrx4bWy0Wt+a/PaGP8AZGl94Cxu9AoWatZWb9QN +OKCDgZOuGFP0KSyekLQeASjMqJnan3FBSZ62H0QAdlIx3sQBdjJY3l6+k4Ud +TDZiAgIJikZMTCAtGCCGzCQIkBRshZqi/Q+1G1jB2u4O4MPa/ih1Yxo7CHDG +4KNG3YAshswkCJDJeJkEAXL4gD/44jAcEAyZAYePugHkUi7gjAGfvGs3O04E +4BLj1I21fV/jRAAuNMjAWdwLN98MVruB0JJB6kaaCEAWdWNSNyCHojEJAmSa +7wSr3ZZqBr99yLK2SDiUYW8cLjHm8BnwluEqw045BrxluNaYg2jAW4bLjTCO +7PuCufNzhhFmHRaEYe7kQBhhHHV/g5Dl/MR7hEdw33cHueZ148zQ6HtkdXxr +sCnI//lg3zPw0wd0WTpyZ1P9RYDBxckfvLI5OtIH9Fo3co/vLwiMLH5ublaS +9NtzD2hO7u30FwHGFCxfxB9MNuvG/Pj0AWtnaNfavazd8lqIoBVBoUgUkPhd +8RmCU8V/3Txzc+LQTStRXfy5XsPhiMXBHv91/3uD49MVo5vSsXhTi7c8rYSo +WtMhn6StThfQFhn7BHqBtkjXJ9ALNKS/RYYWCT5tSazUUcY8/rXbAtnUjSqE +nab5tFKLmNM6OVyFmNM6paMMi9J0Rg4XIMj0xOOvDBGmJ+pGGYJMf2T13USY +RqXzVmLfyoooLdrMWCldgCDTlj3bm2V1AYLMw8X/NUqQsXEOy+qrJCIpwjzW +2kaj+PW1IzkjiGfwgyDzNOkn3WI+qxvXSodXkHkaCfkEeoG2eJxVJ/40St5W +pG7QLqlbhfkeTZO9VYg5TfPgq0LAaU5QKNSN8sSchgSbi6Zo3xG3iiNftz2w +KbG5SA6XcXfMdSLXUhmqK9AFepnLSaq67o6/qSN3kFF1FZts6GUuYR2jrgLB +D1Zcb7oKg5inq7pRS27d2Dwy+GtwvF7mErKortz476kbcek4c0V489nkCdbi +vzZnmE8OF48PFjEWe1mnc5jkqW5x2SEY6UGhCF4PDohPuLMuwR6KxhO8Dkm/ +Nz55+rqFbpX2SRg+SAOyKB1M6gb5lA7kAPu9orU4hiUH2GNtGY0Bvew8Zx9J +QkBKkODhwiIpQYL0ICYrSLCaQSzeSFa3PTyKfGDRu1b4DMsiKUGa+QZzvnVl +DxnCnHwAsmwWDSWFyf/bG59tFg2pghxgbvMh4inDpG4wExeE+NfgOzj5M6C1 +fpcMYwq+kY+/VZmXi/mfJMw4Fvd9SYNhvZbEryeOr9d2ykmkx6R0kE/OIAfI +ZdYxOAlALgmDHCCLBw2WucgiVZjUDXLIFj7IAfaTLXzw+GCn+Ft7yTMgvc9+ +e/aJ1W4jt7P9j2tJoRHoZS7k6TMIXcyFpNMIPBq4g6Tqm7rBVeJl0tot4ha5 +H0VlAvt5JHUpt0+lAVkkTH9y+9QiOcfImZ6s9WbwerClp0TL6I7M6UOwu+/9 +4trev/iwWi2nRXKmD3FNWKsh09LDQg6QS84A+8VPJQYkAcgiYZhMOMkkYTDh +JItUYZIG5PCI4YM0YKe4aEieYXmCsFOwXdC3KgOy74ssa1uDVI+hrG0PgwNk +0SB0MReSToPwdOBCcmkc+ppL+LQ7FB3NeWvrpXRJL3MH6TQIHc2FPIz6s9ib +epnLyahuzDfqvF8J/gRXkVF9WFy/ssrRq+p9Wr0BnBfMMeIpBz2p/iyo3gAu +oQeH8n461Op3+dYBlX8o8+6u0u/xShot0n1DmXd3lUeGpbMO6LuhxH1tdZQD +9No4Fh/xFkg5QK+NY3Fh4SF1QxI2R5eNYG1sPmHYVm8AO1mb6sxmD64dcFUO +nH+7JHy+u+uGNCgsHfA93VF34MuW5yswqNWNkvYU//MH7GnAsTOY9zbh7g6S +AyW945yI+WvHPquToz5ozOHzSJvHKlY05EABm3Vj5wfSw8N2/pbzA1/OPNPd +VT14+kiDawXxjKMdH7B48NqZN/srOEn61823HziA8t65sbNrcns5nbectFkZ +Fn/N6oI93b3Z4ydnNXLmaXJ75FjdyHoAsWk+o5g+b99KD9s9g3TtvVkN2FlJ +Fo9fe8vONnO3zawIXtns5fm/8z+pG1dZ7Igg/vFbgsP2XyuoD9PnDo0PWLxE +cNhay9dy7FjjuclaVsR/Svfy9Lmv49cXL33zzfVpLbbBQIvflT4gcbnF/l08 +284GrJ0kfcyx9nOHnT2V28vzAzavW+hW2ydc8MFAyCJc4AGaxQwNJk/P3VQM +mCyPZxIlmLa+NCSgwMJkIAD51I2d4kAJHYOT/2lre2PsfmE0a5vEWBRvpYv/ +WqNdUE6Q59L+DNFjHFL9KiLJODwlL+GLbIaiblzCGhHjkOp3EE8GIc8vpG4w +CKl+OfGkJ4slwqeVO4gn3Vjb6ziZdVxNPOlDXC5itdvYD/GkD9K4GKGmG56A +xZi/0ROZXIBPf/REGpdhtZmevBNYJhejVtMHOVySTyt0QA5XIeY0bZ69MjnL +yXApHTTKOv8ZJyMm4PRBJu93vtKKNt2QzDud/yrKHI9uyOQ9gv0Y5091Ubug +DmkcCwIShGhPxNIHiDnPtD8tTZ5jcUDSvy6eIev8UN2BUiCT58sX82gsfve0 +GKu1Myy+S8B5mjjzg79uvmVA8fLF+9d0lZi/PVgGOTlpgWLivI2flTvHwiDW +ymw6UPPYJkI9RSUlrjBQ12KJmNZTd/FP1Vpf3OH7XQtXHPy1AwaMNo8VZ2Oc +t6/PD9Zh68Zo9wtrjIL9xAomS/Q55h/TarcFalI39hvzoxkEDIHDxI1hyfzD +lFyGJfMPUzcYlsw/SQAZx7C7L+4gegxC3biQADIIeX4VtZdxSPJrqRsMQp5f +Tkjpm6n1AZsRE0/65lP5AXvqhngyAnme9i4F73+DiMW/Cik9Wcxneb4mLhTB +K/GvpnB0JsjqYDhI9bl4Z0scrqBEvCLVWg/XiRO7rTwv2cImAgJ362AUFBvL +rRRSuFvro6DkWG5oDgb36WAIvD6vTJa5Ygdxg8Naz/9gfbLwpUteDh6ig+fm +vPGF76X10MExHaR9cAt3j+X4cvddC56p6Sfm4hJlgbpRcYYDD9Fu5q+1/I7b +eSVdfjl4oA4yP1E0Lr+j9IUaDSDket38X0ycP2f67Ynzv/901U2pDDCVWgE4 +c4nNM+y5hJEOFypQN05eZeeE4fCc5EBj9rQHOlZssnHsQvPxnvgwMm1Vhks+ +K1nEgANDIHewBKP+wJwh/fZ4LCdqy/mPS4ffC904UwT2HJAoAjubFF9x84Cs +82cxzYADIy73gX5sMhOfYa3ZB85/eNTHbYMBrQ2itXG6VjfmB0xL4zp9/vkr +wdhMX27tgITDdUPRgGmpGkxRZVj8dfG96TfGlw6akfv2V1Sg9t/ysfcCU3Kb +9LReMYL3TisP4sSoTFwxOGyz5edvOfcMAAAAAAAAABzwP+wUVmI= + "], {{0, + 314}, {360, 0}}, {0, 255}, + ColorFunction->RGBColor], + BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], + + Selectable->False], + DefaultBaseStyle->"ImageGraphics", + ImageSizeRaw->{360, 314}, + PlotRange->{{0, 360}, {0, 314}}]}], ",", + RowBox[{"2", "\[Rule]", + GraphicsBox[ + TagBox[RasterBox[CompressedData[" +1:eJzt3E2O5TQQwPEAG5ZcgVuwZckWxAFmxPCxGaQBCXEf7hkaWhOMy3bs+LNc +/59Eq/t1XlIu2xXH/YYv3/767Y+fHsfx2+cvX75988fXHz68+fO7L15++P79 +b7/89P7dD9+8//3dT+8+fPX2s5cX/3r57+dPjuOf708AAAAAAAAAAAAAQH/H +/72+4v0q513PLjfgr8PyiuNj6C3dtHSrt0mCdjkDVXar+17vJMHzp69bGvAp +yoX7euxy6XjSl6uMuehy3hW9S3shaeQNIffF4IgKtl17ErTLqQPBH+VJYr18 +O5drwpYnka/HAs6/kDxbv3EbO39simmUOSRiA2mDDGzgQScGe62olxt2ek5Z +qLz047LzTM75tU+ZB12gvcn7KeqR22qfrirBH2ukq0TwlQftTb/SHHVDHl/T +ieihefG/7eWuUy8zPG9dlDhPsBB5GsUeiDB9QKcAeiuNfHwXIEdp8mtKzZj7 +dWzKyyOf/fa27FTKr356p0x95Jm9jH56j8D8udzwcjlTL33A7VWeBJchsztU +T5kmQ0515dyAtbrRpKr0ztjtAdqnTGX8G2RgA8MeHwaomfX563/3yCPkQcz5 +b/cOqA9gvOYZk93RJ3D8p/fAW60fY/Hkt90bqKfI4YN4rncVBSDny2rZDmoy +zYMZONcbb7vqWjTWFGvjgynv/fh4Cjx4l7yixr6rjFnm3MgYXoqRhAcrZPMB +XBnPs/NUnmGw5q2maIxnKudL1Y36tzc5w3htA9aYgQ2Yynnzm1T9YqO+btS8 +fYrmj8Yak6CdqS2Os+lO2vS36+21VpHrzcAGrCW/csY1qbRN3q6311o9oOnN +wAas5b9V3Wgb1YMYJgZQj7qxAVP5n/6EUn+GDaYMGdiAtS4YP/EPoTKAxDnl +60H1AZSG1zaAxDmDr4/PgAXTh5k6pTnpkUM5L7xvzv/fmt3XB/Cue3Z4vpA1 +IXbFWE5Qw0vsKTI/LbJVlU6BfmlMzwj548i6EbxW8wBkYbxNQtsALIt1MUlO +KEpO70zedtb43hx/uXQbmy94EESGE2KL5OCRA4brmnVj8FS9vRBDup/x3a1X +ft0YGdU6MawzkNaJZFdkuFTOvX5YMMGrTwxgkYHEkB6ADOdb8AHBu/T0urFC +2WRI90aS8+XkanoyjQfAeB6DPBeJ5Wqd29z4GA5hcAAynrkBWLBapy8ulqUV +UjcrBve6LDaM8DqdtN8K1tgVdhWmBzDr6ucaezs2kfN8q9WNc/aNfnoAFI1Z +yHk+OUSnZ48AqBtTkPMi0xcb62xMzQpgnQxYRvKLuOmakrS5V5fBzLruCs03 +jl4ock3bibNmynU903c2Jl4dJ3Wj0PQV2vQArjDmXn16BkAXFFkhXb1jkNsI +7vPRCtPWe147xNZTLMJYu2JncA+Qb1Qt3cvuMacYcntkwJphdeNceMoEI3R/ +FYwz2Bz59tsjF0lCjWCLblt9LHPvwAO9ey12/tVGixzJR2gR4r0ldob0AcEf +9Uo0JNZkmSvo0vuup2h2yGl+fSOzJNuVPj54fi2ZuZXflkOsRjqHhl56d5+6 +sVFUJRJnqDlAndLm7JcBaw6h3/nbnrmfxNogpy05B9QHuZrSXt4yCda4C8hO +51c9TrzS0eQ8+9m7dYjp1+kbjKirtD5+u7p1V6m9Wwep95DeYETVp2iDJKRt +30B4BvS49hFVnyIL02r7BsLjbXEcIaUnrHn7gqgbt/brdOTwevyo2C9l2Ljs +ZONwNpCNNBmvvO5+3PuMnHOZf0U4mMEm41I/5hk8NmeQwSbjUjPmbd5nX/GY +b7bhqF9pmB05xovGabv3javvd7PDhilzkgR7mtwsjA8b480/yYA9TXqcMcPE +Md58g0p7XO4EMmYsZCDW79dXC0mAq7TT5bAxy07ldJvJvQOvSnufoWJwysQa +ayoJcFE3SlkrGiedjpAHjyr9glHBYBKstRe3vF2L2AgxuD6/8FBvue1IuK0b +t7/d28FusO0BgITbomF52Fhu+yvjAwBSTlkwPmaYNaf5MQBPzs7G4JDGk/sY +7uOJkSR42NtBWmxU2BkwwbphfMqQBNwKDgxTo8WbHabaHkMGkBa8rVgbNl57 +rTU/iCTglvGJwxpDIiFIk6t0g2PGYJNjzI4BlLrGidkBY7bhEqlAPuN14+ST +1R+RAeRjypxMmY9IAjJRN07qxr/IAIowYE79STiSYgd4b58XPqDSBhPHqwPX +N27TZCWR7wWQT/sjWyx++aJXLvQ2GViB6rpx1v0PqAE8467hT5034uD2Rfr4 +3iEBe0vsHGqhN3JANbltqIveyAHVVE891cEDSm0w7zZoAqCOt8Whbt9DBrx+ +zMAeYrNPxRx0g6RuAIMd4kNTiuYgiw1gOnVzUF3AwGY0zkGNMQM70TgH2RcF +JlI99fRGDii1wS1bdfCARtqLxkndAGZI/yn2EP+exf1mTNmRnzDxPmpC3QAG +OyLSvw0ePDjCYQEASEjf0+UMHTZnD7EEGhwAgJjgMiN4wDl8zsYuR90A1pEu +C+MfEFhaAOu7naTjZzG7GYBes+YvdQPQaPqfMKgbgDrT7/jUDUCj6TOXugHo +MndbY/pTEoBSE+ds7HNfAJY1/UbPMgPQaPq0pWgA67sKhft1bjCUDmB962xF +rhADgBzekmNuJHMDAJBvhbv89AAAFFnhAYG6AajTe9oGP9bl1ivqBqBR7yXH +VR/cWrHIliyAZ3pP4djJKRqAar1v/ZQIYD8D5jV1A9hPcNOy0/nbnhnAXO6+ +ZY+TUzSALY3fIAWg2oC/yVI3gM3ID2Vd0/zZakHumVA3gP3IDdKa/dLe260A +lhJcbDyY+N55WoYIYDFelahZLbDSAAyqn/jUDcCax3WDnQ3ApspZT90ATGky +5SkagB1NHjEoGoA1LDYAPFA68eUHvagbgDWlc19+6qNPXACWVrpyYJkB4Kxe +dQAwSO5XxMrC9VvqBoDM3U4eUgC4Mjc6KBoApERlYLEBwJOz2KBuAHDdbmtQ +NAB4EsWBugEgJl03xscDQAW5tGCxAeCWVyIoGgBuuYWCogEgh/eZc+oGgBz8 +7RXAA9QNAKUoGgAAAAAAAAAAAACAYf4G0E7JMg== + "], {{0, 164}, {360, + 0}}, {0, 255}, + ColorFunction->RGBColor], + BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], + + Selectable->False], + DefaultBaseStyle->"ImageGraphics", + ImageSizeRaw->{360, 164}, + PlotRange->{{0, 360}, {0, 164}}]}]}], "}"}]}], ",", + RowBox[{"PerformanceGoal", "\[Rule]", "\"\\""}], ",", + "\[IndentingNewLine]", + RowBox[{"VertexSize", "\[Rule]", ".33"}], ",", + RowBox[{"ImageSize", "\[Rule]", "400"}]}], "\[IndentingNewLine]", + "]"}]}]], "Input",ExpressionUUID->"e3a9e101-4bf9-4424-9ba7-fb5e726ac6d8"], + +Cell["\<\ +Let us take a random walk on this graph, and iteratively apply \ +transformations to a point according to the traversed edges.\ +\>", "Text",ExpressionUUID->"0109693d-16d5-4a39-b59e-4b14d23830c8"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"walk", "=", + RowBox[{"IGRandomEdgeIndexWalk", "[", + RowBox[{"graph", ",", "1", ",", "20000"}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pts", "=", + RowBox[{"Rest", "@", + RowBox[{"FoldList", "[", + RowBox[{ + RowBox[{ + RowBox[{"#2", "[", "#1", "]"}], "&"}], ",", + RowBox[{"{", + RowBox[{"0.", ",", "0."}], "}"}], ",", + RowBox[{ + "trafos", "\[LeftDoubleBracket]", "walk", "\[RightDoubleBracket]"}]}], + "]"}]}]}], + ";"}]}], "Input",ExpressionUUID->"bb0031f6-6894-4730-a3aa-6424dc8001f3"], + +Cell["\<\ +The resulting list of points will approximate the union of the two fractal \ +curves.\ +\>", "Text",ExpressionUUID->"656d6ab6-d05a-43bc-894a-62a15d26ea23"], + +Cell[BoxData[ + RowBox[{"Image", "@", + RowBox[{"Graphics", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"AbsolutePointSize", "[", "1", "]"}], ",", + RowBox[{"Point", "[", "pts", "]"}]}], "}"}], + "]"}]}]], "Input",ExpressionUUID->"24ad112e-931e-4812-be8f-cf7869c83506"], + +Cell["\<\ +The two curves can be separated by filtering points according to which graph \ +vertex they correspond to (i.e. which of the 5 edges was last traversed when \ +obtaining the point).\ +\>", "Text",ExpressionUUID->"b8b2f72f-b1e0-4e83-a39e-70484cf83d75"], + +Cell[BoxData[ + RowBox[{"Image", "@", + RowBox[{"Graphics", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"AbsolutePointSize", "[", "1", "]"}], ",", + RowBox[{"Point", "@", + RowBox[{"Pick", "[", + RowBox[{"pts", ",", "walk", ",", + RowBox[{"1", "|", "2", "|", "3"}]}], "]"}]}]}], "}"}], + "]"}]}]], "Input",ExpressionUUID->"d7a955f7-9a68-4da5-9011-5effc65605c5"], + +Cell[BoxData[ + RowBox[{"Image", "@", + RowBox[{"Graphics", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"AbsolutePointSize", "[", "1", "]"}], ",", + RowBox[{"Point", "@", + RowBox[{"Pick", "[", + RowBox[{"pts", ",", "walk", ",", + RowBox[{"4", "|", "5"}]}], "]"}]}]}], "}"}], + "]"}]}]], "Input",ExpressionUUID->"94902cbf-b010-42df-bfc8-25b83fde685f"], + +Cell[TextData[{ + "The technique described here is taken from \[OpenCurlyDoubleQuote]", + ButtonBox["Generating self-affine tiles and their boundaries", + BaseStyle->"Hyperlink", + ButtonData->{ + URL["http://www.mathematica-journal.com/2009/01/generating-self-affine-\ +tiles-and-their-boundaries/"], None}, + ButtonNote-> + "http://www.mathematica-journal.com/2009/01/generating-self-affine-tiles-\ +and-their-boundaries/"], + "\[CloseCurlyDoubleQuote] by Mark McClure." +}], "Text",ExpressionUUID->"768f3661-fa65-486a-9f55-bbd9e6193547"] }, Closed]] }, Closed]], @@ -24971,6 +25406,9 @@ Cell[BoxData[ "IGMeshGraph"}]], \ "Input",ExpressionUUID->"c4054c88-3a6c-4963-b636-9af6268fa0f2"], +Cell["The available options are:", \ +"Text",ExpressionUUID->"b73d7daf-c257-4968-b038-06322735c6d3"], + Cell[TextData[{ Cell[BoxData[ "EdgeWeight"],ExpressionUUID->"880c57c3-f15e-4519-9b80-c3fcb4ff5f60"], @@ -25030,7 +25468,7 @@ Cell[BoxData[ 3.720531678733333*^9}},ExpressionUUID->"10b523c7-8208-4560-b634-\ 9fe7c31ffe81"], -Cell["Find the corners:", \ +Cell["Find the corners.", \ "Text",ExpressionUUID->"c7abf921-e541-4ec4-a186-a7ba034ace24"], Cell[BoxData[ @@ -25055,7 +25493,7 @@ Cell[BoxData[ 3.7205315417038794`*^9}},ExpressionUUID->"c5cca954-82a2-49c3-9b49-\ eb95831486f7"], -Cell["Highlight the shortest path:", \ +Cell["Highlight the shortest path.", \ "Text",ExpressionUUID->"4a186f7a-8cdd-4129-a479-fa83f99de4e4"], Cell[BoxData[ @@ -26943,7 +27381,7 @@ Cell[BoxData[ }, Open ]] }, WindowSize->{746, 763}, -WindowMargins->{{Automatic, 106}, {Automatic, 30}}, +WindowMargins->{{Automatic, 34}, {Automatic, 25}}, WindowTitle->"IGraph/M Documentation", PrintingStartingPageNumber->1, PageHeaders->{{ @@ -26984,8 +27422,8 @@ PrivateNotebookOptions->{"FileOutlineCache"->False}, ShowCellTags->True, TrackCellChangeTimes->False, GraphicsBoxOptions->{ImageSize->250}, -FrontEndVersion->"11.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 12, \ -2017)", +FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \ +10, 2017)", StyleDefinitions->Notebook[{ Cell[ StyleData[StyleDefinitions -> "Default.nb"]], @@ -27002,7 +27440,7 @@ StyleDefinitions->Notebook[{ Cell[ StyleData["Item"], DefaultInlineFormatType -> StandardForm]}, Visible -> False, FrontEndVersion -> - "11.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 12, 2017)", + "11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September 10, 2017)", StyleDefinitions -> "PrivateStylesheetFormatting.nb"] ]