forked from soltanianzadeh/STNeuroNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_inference_neurofinder.py
251 lines (214 loc) · 8.16 KB
/
demo_inference_neurofinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Demo to run inference on neurofinder test data
%
% Please cite this paper if you use any component of this software:
% S. Soltanian-Zadeh, K. Sahingur, S. Blau, Y. Gong, and S. Farsiu, "Fast and robust
% active neuron segmentation in two-photon calcium imaging using spatio-temporal
% deep learning," Proceedings of the National Academy of Sciences (PNAS), 2019.
%
% Released under a GPL v2 license.
@author: Somayyeh Soltanian-Zadeh
"""
import os
import sys
import niftynet
import numpy as np
from pathlib import Path
import scipy.io as sio
import STNeuroNetPkg
import matlab
matlabLib = STNeuroNetPkg.initialize()
#%% Fields to be determined by user:
# Data to process. Choose from '100', '101', '200', '201', '400', and '401'
n = '400'
# dataType should be either 'test' or 'train'
datatype ='test'
# Which network to use: 'neurofinder', 'Grader1', 'Allen', 'All_Allen', or 'ABO_Neuro'
networkType = 'Grader1'
# Which marking used for training: 'neurofinder' or 'Grader1'
# (only applicable to 'neurofinder' and 'Grader1' networkTypes)
markingType = 'Grader1'
#%% Setting parameters
Thresh = 0.5 # IoU threshold for matching
IDmap = {'100': 0,
'101': 1,
'200': 2,
'201': 3,
'400': 4,
'401': 5
}
meanArea ={'100': 200,
'101': 200,
'200': 120,
'201': 120,
'400': 100,
'401': 100
}
sp_window = {'100': (504,504,120),
'101': (504,504,120),
'200': (504,464,120),
'201': (504,464,120),
'400': (480,416,120),
'401': (480,416,120)
}
scale_factor = {'100': 1,
'101': 1,
'200': 1.17,
'201': 1.17,
'400': 1,
'401': 1.3
} #needed for difference in pixel size between data
name = [n]
AvgArea = meanArea[n] #pixels
SW = str(sp_window[n])
if networkType == 'Allen':
subDir = 'ABO'
subDir2 = 'All'
threshFile = 'OptParam_Jaccard_ABO_all275Whitened.mat'
AreaName = 'minA'
elif networkType == 'All_Allen':
subDir = 'ABO'
subDir2 = 'AllABO'
threshFile = 'OptParam_Jaccard_ABO_allWhitened.mat'
AreaName = 'minAreaNF'
elif networkType == 'ABO_Neuro':
subDir = networkType
subDir2 = ''
threshFile = 'OptParam_Jaccard_AllenNeuro.mat'
AreaName = 'minAreaNF'
else:
subDir = 'Neurofinder'
subDir2 = markingType
AreaName = 'minA'
if markingType == 'neurofinder':
threshFile = 'OptParam_JaccardNew_nf_All.mat'
else:
threshFile = 'OptParam_JaccardNew_G1_All.mat'
## Set directories
dirpath = os.getcwd()
DirData = os.path.join(dirpath,'Dataset','Neurofinder',datatype)
DirSaveData = os.path.join(dirpath,'Results','Neurofinder','data',datatype)
DirSave = os.path.join(dirpath,'Results','Neurofinder','Probability map')
DirModel = os.path.join(dirpath,'models',subDir,'Trained Network Weights',subDir2)
DirMask = os.path.join(dirpath,'Markings','Neurofinder',datatype,'Grader1')
DirSaveMask = os.path.join(dirpath,'Results','Neurofinder','Test Masks')
DirThresh = os.path.join(dirpath,'Results',subDir,'Thresholds')
## Check if save direcotries exist
if not os.path.exists(DirSaveMask):
os.makedirs(DirSaveMask)
if not os.path.exists(DirSaveData):
os.makedirs(DirSaveData)
## read saved threshold values
optThresh = sio.loadmat(os.path.join(DirThresh,threshFile))
thresh = matlab.double([optThresh['ProbThresh'][0][0]])
if networkType=='ABO_Neuro':
# min area from um**2 -> pixels
minArea = matlab.double([((1/scale_factor[n])**2)*optThresh[AreaName][0][0]])
elif networkType == 'Allen':
# min area from 0.78 um/pixels to pixels for each dataset
minArea = matlab.double([((0.78/scale_factor[n])**2)*optThresh[AreaName][0][0]])
else:
minArea = matlab.double([optThresh[AreaName][0][IDmap[n]]])
#%% Check if HomoFiltered downsampled data is available
data_file = Path(os.path.join(DirSaveData, name[0]+'_dsCropped_HomoNorm.nii.gz'))
NormVals = matlab.double([0,0])
s = 35
if not data_file.exists():
print('Preparing data {} for network...'.format(name[0]))
data_file = os.path.join(DirData, name[0]+'_processed.nii.gz')
if n == '100' and datatype == 'test':
NormVals = matlab.double([0,1.32])
matlabLib.HomoFilt_Normalize(data_file,DirSaveData,name[0],s,NormVals,nargout=0)
#%%
## Run data through the trained network
# first create a new config file based on the current data
f = open("demo_config_empty_neuro.ini")
mylist = f.readlines()
f.close()
indPath = []
indName = []
indNoName = []
indSave = []
indModel = []
indWindow = []
indIter = []
for ind in range(len(mylist)):
if mylist[ind].find('path_to_search')>-1:
indPath.append(ind)
if mylist[ind].find('filename_contains')>-1:
indName.append(ind)
if mylist[ind].find('filename_not_contains')>-1:
indNoName.append(ind)
if mylist[ind].find('save_seg_dir')>-1:
indSave.append(ind)
if mylist[ind].find('model_dir')>-1:
indModel.append(ind)
if mylist[ind].find('spatial_window_size')>-1:
indWindow.append(ind)
if mylist[ind].find('inference_iter')>-1:
indIter.append(ind)
# write path of data
mystr = list(mylist[indPath[0]])
mystr = "".join(mystr[:-1]+ list(DirSaveData) + list('\n'))
mylist[indPath[0]] = mystr
# write name of data
mystr = list(mylist[indName[0]])
mystr = "".join(mystr[:-1]+ list('_dsCropped_HomoNorm') + list('\n'))
mylist[indName[0]] = mystr
# exclude any other data not listed in names
AllFiles = os.listdir(DirSaveData)
AllNames = []
for ind in range(len(AllFiles)):
if AllFiles[ind].find('_dsCropped_HomoNorm')>-1:
AllNames.append(AllFiles[ind][:AllFiles[ind].find('_dsCropped_HomoNorm')])
excludeNames = [c for c in AllNames if c not in name]
if len(excludeNames):
mystr = list(mylist[indNoName[0]])
temp = mystr[:-1]
for ind in range(len(excludeNames)):
temp = temp + list(excludeNames[ind]) + list(',')
mystr = "".join(temp[:-1]+ list('\n'))
mylist[indNoName[0]] = mystr
#write where to save result
mystr = list(mylist[indSave[0]])
mystr = "".join(mystr[:-1]+ list(DirSave) + list('\n'))
mylist[indSave[0]] = mystr
#write where model is located
mystr = list(mylist[indModel[0]])
mystr = "".join(mystr[:-1]+ list(DirModel) + list('\n'))
mylist[indModel[0]] = mystr
#write inference iteration to use
mystr = list(mylist[indIter[0]])
if networkType =='All_Allen':
mystr = "".join(mystr[:-1]+ list('39999') + list('\n'))
else:
mystr = "".join(mystr[:-1]+ list('-1') + list('\n'))
mylist[indIter[0]] = mystr
#write the spatial size of data under Inference section (should be the last entry)
mystr = list(mylist[indWindow[-1]])
mystr = "".join(mystr[:-1]+ list(SW) + list('\n'))
mylist[indWindow[-1]] = mystr
# Write to a new config file
f = open('config_inf_neuro.ini','w')
f.write(''.join(mylist))
f.close()
sys.argv=['','inference','-a','net_segment','--conf',os.path.join('config_inf_neuro.ini'),'--batch_size','1']
niftynet.main()
#%%
# Postprocess to get individual neurons
saveTag = True
SZ = matlab.double(list(sp_window[n][:2]))
for ind in range(len(name)):
print('Postprocessing data {} ...'.format(name[ind]))
Neurons = matlabLib.postProcess(DirSave,name[ind],SZ,AvgArea,minArea,thresh,nargout=2)
if saveTag:
print('Saving results for {} ...'.format(name[ind]))
sio.savemat(os.path.join(DirSaveMask,name[ind]+'_neurons.mat'),{'finalSegments': np.array(Neurons[0],dtype=int)})
## Compare performance to GT Masks if available
if DirMask is not None:
print('Getting performance metrics for {} ...'.format(name[ind]))
scores = matlabLib.GetPerformance_Jaccard(DirMask,name[ind],Neurons[0],Thresh,nargout=3)
print('data: {} -> recall: {}, precision: {}, and F1 {}:'.format(name[ind],int(10000*scores[0])/100,int(10000*scores[1])/100,int(10000*scores[2])/100))
matlabLib.terminate()