forked from soltanianzadeh/STNeuroNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_config_empty.ini
72 lines (62 loc) · 1.41 KB
/
demo_config_empty.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
[imgs]
path_to_search =
filename_contains =
filename_not_contains =
spatial_window_size = (144,144,120)
axcodes = (L,A,S)
pixdim = (1.0, 1.0, 1.0)
interp_order = 3
[label]
path_to_search =
filename_contains =
filename_not_contains =
spatial_window_size = (144,144,120)
pixdim = (1.0, 1.0, 1.0)
interp_order = 0
[SYSTEM]
cuda_devices = 0
num_threads = 2
num_gpus = 1
model_dir =
[NETWORK]
name = stneuronet
activation_function = relu
batch_size = 3
decay = 0
reg_type = L2
# volume padding preprocessing:
# These values were set for the ABO dataset such that the final spatial dimension was
# divisible by 8.
volume_padding_size = (1,1,0)
# histogram normalisation
normalisation = False
whitening = True
normalise_foreground_only=False
queue_length = 10
window_sampling = uniform
[TRAINING]
sample_per_volume = 1
rotation_angle =
scaling_percentage =
random_flipping_axes= 0,1
lr = 0.0005
optimiser=adam
loss_type = Dice
tensorboard_every_n= 200
starting_iter = 0
save_every_n = 250
max_iter = 500
max_checkpoints = 50
[INFERENCE]
inference_iter = -1
border = (0,0,0)
save_seg_dir =
output_interp_order = 0
# Manually set for the ABO dataset considering the cropped border
spatial_window_size = (488,488,120)
############################ custom configuration sections
[SEGMENTATION]
image = imgs
label = label
output_prob = True
num_classes = 2