Skip to content

Latest commit

 

History

History
46 lines (40 loc) · 1.82 KB

File metadata and controls

46 lines (40 loc) · 1.82 KB

Learning-sparse-deep-neural-networks-with-a-spike-and-slab-prior

Code to reproduce the experiment results in paper Learning Sparse Deep Neural Networks with a Spike-and-Slab Prior. We apply the extended SGMCMC method from paper Extended Stochastic Gradient MCMC for Large-Scale Bayesian Variable Selection (https://arxiv.org/abs/2002.02919) to high dimensional variable selection and network pruning

Simulation:

Generate Data:

python Generate_Data.py

Variable Selection:

python Simulation_Regression.py --data_index 1

Structure Selection

python Simulation_Structure.py --data_index 1

Network Compression

MNIST Compression

python mnist_300_100.py

CIFAR-10 Compression

python cifar_run.py -depth 20 --Proposal_B 400 250 --lambdan 0.0001
python cifar_run.py -depth 20 --Proposal_B 500 500 --lambdan 0.001
python cifar_run.py -depth 32 --Proposal_B 400 180 --lambdan 0.0001
python cifar_run.py -depth 32 --Proposal_B 400 300 --lambdan 0.001
python cifar_run_vgg.py

CIFAR-10 Result, average over 3 runs. The first four lines denote the result using the model at last epoch. The last four line denot the result using Bayesian model average over models at the last 75 epochs.

Model Average Model Sparsity Accuracy
No ResNet20 9.88%(0.08%) 91.26(0.02)
No ResNet20 19.83%(0.02%) 92.32(0.04)
No ResNet32 8.77%(0.12%) 92.74(0.10)
No ResNet32 4.99%(0.06%) 91.39(0.10)
Yes ResNet20 9.65%(0.05%) 91.60(0.06)
Yes ResNet20 19.76%(0.02%) 92.65(0.02)
Yes ResNet32 8.69%(0.16%) 92.99(0.08)
Yes ResNet32 4.89%(0.09%) 91.84(0.09)